

Drinking Water Management System Annual Report August 2018 – July 2019

Warrumbungle Shire Council Date: December 2019 Version: 2.1

Document control

Date	Version	Status	Person
22/08/2019	1.0	Internal draft	Lucy Parsons (Atom Consulting)
28/08/2019	1.1	Onsite review of	Natalie Crawford (Atom Consulting)
		data with Council	
13/09/2019	2.0	For Council	Natalie Crawford and Lucy Parsons (Atom
		review	Consulting)
2/12/2019	2.1	Council review	Cornelia Wiebels (Warrumbungle Water)

Executive Summary

This Annual Report documents Warrumbungle Shire Council's Drinking Water Management System (DWMS) implementation and drinking water performance from 1 August 2018 to 31 July 2019. Drinking water performance for the period is summarised below.

Critical Control Points

Critical control point exceedances are summarised in Table i-i.

 Table i-i. Critical control point (CCP), critical operational point (COP) and operational critical point (OCP) exceedance summary

Number of CCP exceedances	CCP Filtration	CCP Disinfection	CCP Fluoridation	COP pH	CCP Reservoirs	CCP Distribution Free chlorine	OCP Distribution Turbidity
Coonabarabran	-	-	Not fluoridating		*	2	-
Baradine	1	-	Not fluoridating		*	-	-
Kenebri		2			*	1	-
Bugaldie		1			*	3	2
Mendooran	2	2	Not fluoridating	2	*	5	1
Coolah		1	Not fluoridating		Breach *	1	
Binnaway	-	-	Not fluoridating		*		
Dunedoo	-	-			*		

*CCP inspections were not undertaken in the reporting period

Water quality

NSW Health verification monitoring exceptions are summarised by system in Table i-ii. In January 2019 Coolah was on a boil water alert due to an E.coli read in the reticulation and the discovery of possums in the reservoir, the animals were removed and the reservoir secured; details in Section 8.6.

System	Characteristic	Date	Exception value	Units
Coonabarabran	Total Coliforms	1/05/2019	200	mpn/100 mL
		28/05/2019	1	mpn/100 mL
		26/06/2019	62	mpn/100 mL
Baradine	Total Chlorine	24/07/2018	7.91	mg/L
		18/09/2018	7.98	mg/L
	Total Coliforms	17/04/2019	5	mpn/100 mL
		1/05/2019	45	mpn/100 mL
Kenebri	Free Chlorine	22/01/2019	0.08	mg/L
	Total Coliforms	18/12/2018	8	mpn/100 mL
Bugaldie	Iron	27/03/2019	0.35	mg/L
	Total Coliforms	22/01/2019	38	mpn/100 mL
		28/05/2019	12	mpn/100 mL
	Turbidity	27/03/2019	5.54	NTU

System	Characteristic	Date	Exception value	Units
		23/04/2019	6.35	NTU
Mendooran	Total Coliforms	8/01/2019	2	mpn/100 mL
		30/04/2019	200	mpn/100 mL
	Total Dissolved Solids (TDS)	26/03/2019	637	mg/L
	Total Hardness as CaCO3	25/09/2018	204.3	mg/L
		26/03/2019	224.6	mg/L
	Turbidity	25/02/2019	8.36	NTU
Coolah	E. coli	15/01/2019	15	mpn/100 mL
	Free Chlorine	13/11/2018	0	mg/L
		10/04/2019	0.06	mg/L
	Total Chlorine	10/07/2018	5.07	mg/L
	Total Coliforms	5/12/2018	1	mpn/100 mL
		15/01/2019	200	mpn/100 mL
		30/04/2019	200	mpn/100 mL
	Total Hardness as CaCO3	25/09/2018	474.3	mg/L
		26/03/2019	395.2	mg/L
Binnaway	рН	10/04/2019	1.41	
	Sodium	26/03/2019	209	mg/L
	Total Coliforms	6/05/2019	3	mpn/100 mL
	Total Dissolved Solids (TDS)	26/03/2019	899	mg/L
	Total Hardness as CaCO3	2/10/2018	226.8	mg/L
		26/03/2019	219.7	mg/L
Dunedoo	Total Coliforms	23/01/2019	8	mpn/100 mL
		30/04/2019	12	mpn/100 mL
	Total Dissolved Solids (TDS)	26/03/2019	757	mg/L
	Total Hardness as CaCO3	25/09/2018	409.3	mg/L
		26/03/2019	352.6	mg/L

Continuous improvement plan

A summary of improvement plan progress summary is show in Table i-iii.

Table i-iii. Summary of water quality improvement plan progress

Row Labels	Closed	Complete / implemented	Complete, follow up required	In progress	Not started
Very high	6	15	2	13	
High	18	51		62	23
Medium	23	40		39	29
Low	4	2		7	7
Total	51	108	2	121	59

DWMS Reviews

A summary of DWMS reviews is shown in Table i-iv.

Table i-iv. Review of DWMS reviews

Date	Attendance	Scope	Findings	Actions
25/1/2019	Council, NSW Health, NSW DIPE	Water quality review meeting	Review of water quality data,	
1/03/2019	Council, NSW DIPE	Water quality review meeting	CCPs were reviewed and updated Review of water quality data	
28/6/2019	Atom Consulting,	Review of water quality	Progress of actions	Timelines and

Date	Attendance	Scope	Findings	Actions
	Council, NSW Health, NSW DIPE	improvement plan (very high- and high- level priority actions)	reviewed	responsibility assigned
30/07/2019	Atom Consulting, Council	Review of water quality improvement plan (high and medium priority actions)	Progress of actions reviewed	Timelines and responsibility assigned

Reservoir inspections

A summary of reservoir inspections is shown in Table i-v.

Date	Reservoirs	Findings	Corrective actions
	inspected		
13- 17/5/2019	Baradine WTP CWT	New access hatch installed and external wall sealing and vermin proof works undertaken.	-
13/02/2019	Baradine HL Reservoir	The entry hatch is unsealed against natural and deliberate contamination. The roof area is also unsealed.	The identified issues have been rectified. New access hatch installed.
3/02/209	Binnaway Reservoir	The entry hatch is unsealed around the edges and leaves and debris are entering via the unsealed ridge caps.	This tank still needs to be renovated. Project planning and budgeting is in progress.
7/02/2019	Bugaldie Reservoir	The roof area is unsealed in several areas – the internal areas of the reservoir could not be inspected as there is no entry hatch.	Project planning and budgeting is in progress.
20/02/2019	Coolah Martin St Reservoir	The inspection and cleaning of this reservoir was requested due to a poor sample being taken. Significant water quality risks were present around this reservoir.	The identified issues have been rectified. New access hatch installed.
05/02/2019	Coolah Wentworth Ave No. 1 Reservoir	No water quality issues noted. Entry hatch needs lock.	Entry hatch is now locked.
05/02/2019	Coolah Wentworth Ave No. 2 Reservoir	No water quality issues noted. Entry hatch needs lock.	Entry hatch is now locked.
06/02/2019	Coonabarabran Rifle Range No. 1 Reservoir	There is significant corroded items present in the reservoir.	Project planning and budgeting is in progress.
05/02/2019	Coonabarabran Rifle Range No. 2 Reservoir	The platform/hatch areas are unsealed against contamination.	Project planning and budgeting is in progress.
06/02/2019	Coonabarabran WTP CWT	The entry hatch is unsealed against natural or deliberate contamination.	New access hatch installed.
04/02/2019	Dunedoo – Rhodes No. 1 Reservoir	The roof is at risk of failure due to the corrosion on the rafters and design. There is a significant amount of bird faeces on the roof and platform areas which are unsealed	The entry hatch edges have been mastic sealed and the roof sheet edges have also been sealed off.
04/02/2019	Dunedoo – Rhodes No. 2 Reservoir	The roof is at risk of failure due to the corrosion on the rafters and design. There is a significant amount of bird faeces on the roof and platform areas which are unsealed.	The roof edges have been sealed.
02/02/2019	Dunedoo - Bullinda Reservoir	No water quality issues noted.	New access hatch installed.

Date	Reservoirs inspected	Findings	Corrective actions
2/03/2019	Mendooran Cobra St Reservoir	The entry hatch has no raised or sealed edge and bird faecal material is present on the platform area - the overhead rescue system is attractive to roosting birds, so this faecal issue will be an ongoing problem until the entry hatch is upgraded.	The entry hatch has been upgraded and the centre roof vent area has been sealed off.
24/06/2019	Mendooran WTP CWT	The CWT has been effectively sealed against contamination ingress.	-
29/4-3/5/19	Mendooran Reservoir Coolabah No. 1	Installed new access hatch to seal against contamination ingress.	-
29/4-3/5/19	Mendooran Reservoir Coolabah No. 2	Installed new access hatch to seal against contamination ingress.	-
29/4-3/5/19	Mendooran Reservoir Coolabah No. 2	Installed new access hatch and filling of gaps to seal against contamination ingress.	-

Contents

DC	DCUMENT CONTROL II
EX	Critical Control Points
	Continuous improvement planiv DWMS Reviewsiv Reservoir inspectionsv
1	REPORT PURPOSE
2	DWMS DOCUMENT CONTROL
3	COONABARABRAN.23.1 Scheme summary23.2 Critical control points33.3 Critical limit exceedance63.4 Water quality73.4.1 Data collection7
	3.4.2 Water quality issues7
	 3.5 Consumer water quality complaints/enquires
4	BARADINE
	4.1Scheme summary94.2Critical control points104.3Critical limit exceedance134.4Water quality134.4.1Data collection13
	4.4.2 Water quality issues14
	 4.5 Consumer water quality complaints/enquires
5	KENEBRI16
	5.1Scheme summary165.2Critical control points175.3Critical limit exceedance195.4Water quality195.4.1Data collection19
	5.4.2 Water quality issues205.5 Consumer water quality complaints/enquires20
	5.5 Consumer water quality complaints/enquires

6	BUG	GALDIE	.21
	6.1	Scheme summary	21
	6.2	Critical control points	22
	6.3	Critical limit exceedance	24
	6.4	Water quality	
		6.4.1 Data collection	.25
		6.4.2 Water quality issues	.25
	6.5	Consumer water quality complaints/enquires	25
	6.6	Water quality incidents/emergencies	25
	6.7	Reservoir inspections	25
7	ME	NDOORAN	.26
	7.1	Scheme summary	26
		Critical control points	
	7.2	Critical limit exceedance	30
	7.3	Water quality	31
		7.3.1 Data collection	.31
		7.3.2 Water quality issues	.32
	7.4	Consumer water quality complaints/enquires	32
	7.5	Water quality incidents/emergencies	32
	7.6	Reservoir inspections	32
8	coo	DLAH	.34
	8.1	Scheme summary	34
		Critical control points	
	8.3	Critical limit exceedance	37
	8.4	Water quality	38
		8.4.1 Data collection	.38
		8.4.2 Water quality issues	.38
	8.5	Consumer water quality complaints/enquires	38
		Water quality incidents/emergencies	
	8.7	Reservoir inspections	39
9	BIN	NAWAY	.40
		Scheme summary	
		Critical control points	
		Critical limit exceedance	
	9.4	Water quality	44
		9.4.1 Data collection	.44
		9.4.2 Water quality issues	.44
	9.5	Consumer water quality complaints/enquires	44
	9.6	Water quality incidents/emergencies	45
	9.7	Reservoir inspections	45
10	DUI	NEDOO	.46
		Scheme summary	
		? Critical control points	

10.3 Critical limit exceedance	
10.4 Water quality	
10.4.1Data collection	49
10.4.2 Water quality issues	49
10.5 Consumer water quality complaints/enquires	50
10.6 Water quality incidents/emergencies	
10.7 Reservoir inspections	50
11 STAFF DEVELOPMENT AND TRAINING	50
12 DWMS CONTINUOUS IMPROVEMENT PLAN	51
13 REVIEW OF DWMS IMPLEMENTATION	52
APPENDIX A COONABARABRAN WATER QUALITY DATA	A-1
A.1 Water quality graphs	A-1
A.1.1 Operational monitoring graphs	A-1
A.1.2 NSW Health verification monitoring graphs	A-1
A.2 Water quality data summary	A-2
A.2.1 Verification monitoring	
APPENDIX B BARADINE WATER QUALITY DATA	R 1
B.1 Water quality graphs	
B.1.1 Operational monitoring graphs	
B.1.2 Verification monitoring graphs	
B.2 Water quality data summary	
B.2 Water quality data summary B.2.1 Verification monitoring	
APPENDIX C KENEBRI WATER QUALITY DATA	
C.1 Water quality graphs	
C.1.1 Operational monitoring graphs	
C.1.2 Verification monitoring graphs	C-1
C.2 Water quality data summary	
C.2.1 Verification monitoring	C-2
APPENDIX D BUGALDIE WATER QUALITY DATA	D-1
D.1 Water quality graphs	
D.1.1 Operational monitoring graphs	D-1
D.1.2 Verification monitoring graphs	D-1
D.2 Water quality data summary	D-2
D.2.1 Verification monitoring	
APPENDIX E MENDOORAN WATER QUALITY DATA	
E.1 Water quality graphs E.1.1 Operational monitoring graphs	
E.1.2 Verification monitoring graphs	
E.2 Water quality data summary	E-3

E.2.1 Verification monitoring	E-4
APPENDIX F COOLAH WATER QUALITY DATA	F-1
F.1 Water quality graphs	F-1
F.1.1 Operational monitoring graphs	F-1
F.1.2 Verification monitoring graphs	F-1
F.2 Water quality data summary	F-2
F.2.1 Verification monitoring	F-3
APPENDIX G BINNAWAY WATER QUALITY DATA	3-1
Water quality graphs	G-1
G.1.1 Operational monitoring graphs	G-1
G.1.2 Verification monitoring graphs	G-2
G.2 Water quality data summary	G-4
G.2.1 Verification monitoring	G-5
APPENDIX H DUNEDOO WATER QUALITY DATA H	1 -1
H.1 Water quality graphs	H-1
H.1.1 Operational monitoring graphs	H-1
H.1.2 Verification monitoring graphs	H-1
H.2 Water quality data summary	H-2
H.2.1 Verification monitoring	H-3

Tables

Table i-i. Critical control point (CCP), critical operational point (COP) and operational critical point (OCP) exceedance summary
Table i-ii. NSW Health verification data summaryiii
Table i-iii. Summary of water quality improvement plan progressiv
Table i-iv. Review of DWMS reviewsiv
Table i-v. Summary of reservoir inspectionsv
Table 2-1. DWMS document control 1
Table 3-1. Summary of new bore numbers, names/locations and depths - Coonabarabran
Table 3-2. Summary of critical control points and critical operational points – Coonabarabran 3
Table 3-3. Summary of critical control points changes – Coonabarabran
Table 3-4. Critical limit exceedances – Coonabarabran
Table 3-5. Monitoring undertaken for Coonabarabran water supply system 7
Table 3-6. Summary of water quality customer complaints / enquiries – Coonabarabran
Table 3-7. Summary of reservoir inspections - Coonabarabran 8
Table 4-1. Summary of critical control points – Baradine 10
Table 4-2. Summary of critical control points changes – Baradine 10

Table 4-3. Critical limit exceedances – Baradine	. 13
Table 4-4. Monitoring undertaken for Baradine water supply system	. 13
Table 4-5. Summary of water quality customer complaints / enquiries – Baradine	. 14
Table 4-6. Summary of reservoir inspections - Baradine	. 15
Table 5-1. Summary of critical control points – Kenebri	. 17
Table 5-2. Summary of critical control points changes – Kenebri	. 17
Table 5-3. Critical limit exceedances – Kenebri	. 19
Table 5-4. Monitoring undertaken for Kenebri water supply system	. 19
Table 5-5. Summary of water quality customer complaints / enquiries – Kenebri	. 20
Table 6-1. Summary of critical control points – Bugaldie	. 22
Table 6-2. Summary of critical control points changes – Bugaldie	. 22
Table 6-3. Critical limit exceedances – Bugaldie	. 24
Table 6-4. Monitoring undertaken for Bugaldie water supply system	. 25
Table 6-5. Summary of reservoir inspections - Bugaldie	. 25
Table 7-1. Summary of critical control points – Mendooran	. 27
Table 7-2. Summary of critical control points changes – Mendooran	. 27
Table 7-3. Critical limit exceedances – Mendooran	. 30
Table 7-4. Monitoring undertaken for Mendooran water supply system	. 31
Table 7-5. Summary of water quality customer complaints / enquiries – Mendooran	. 32
Table 7-6. Summary of reservoir inspections - Mendooran	. 32
Table 8-1. Summary of critical control points – Coolah	. 35
Table 8-2. Summary of critical control points changes – Coolah	. 35
Table 8-3. Critical limit exceedances – Coolah	. 37
Table 8-4. Monitoring undertaken for Coolah water supply system	. 38
Table 8-5. Summary of water quality customer complaints / enquiries – Coolah	. 38
Table 8-6. Summary of incident and emergencies, recommendations and preventive actions	. 39
Table 8-7. Summary of reservoir inspections - Coolah	. 39
Table 9-1. Summary of critical control points – Binnaway	. 41
Table 9-2. Summary of critical control points changes – Binnaway	. 41
Table 9-3. Monitoring undertaken for Binnaway water supply system	. 44
Table 9-4. Summary of water quality customer complaints / enquiries – Binnaway	. 44
Table 9-5. Summary of reservoir inspections - Binnaway	. 45
Table 10-1. Summary of critical control points and critical operational points – Dunedoo	. 47
Table 10-2. Summary of critical control points changes – Dunedoo	. 47
Table 10-3. Monitoring undertaken for Dunedoo water supply system	. 49
Table 10-4. Summary of water quality customer complaints / enquiries – Dunedoo	. 50

Table 10-5. Summary of reservoir inspections - Dunedoo	50
Table 11-1. Summary of staff training	50
Table 12-1. Water quality improvement plan status	51
Table 13-1. Summary of reviews	52
Table A-1. Coonabarabran operational monitoring data summary	A-2
Table A-2. Coonabarabran verification monitoring data summary	A-3
Table B-1. Baradine operational monitoring data summary	B-3
Table B-2. Baradine verification monitoring data summary	B-4
Table C-1. Kenebri operational monitoring data summary	C-2
Table C-2. Kenebri verification monitoring data summary	C-2
Table D-1. Bugaldie operational monitoring data summary	D-2
Table D-2. Bugaldie verification monitoring data summary	D-3
Table E-1. Mendooran operational monitoring data summary	E-3
Table E-2. Mendooran verification monitoring data summary	E-4
Table F-1. Coolah operational monitoring data summary	F-2
Table F-2. Coolah verification monitoring data summary	F-4
Table G-1. Binnaway operational monitoring data summary	G-4
Table G-2. Binnaway verification monitoring data summary	G-5
Table H-1. Dunedoo operational monitoring data summary	H-2
Table H-2. Dunedoo verification monitoring data summary	H-3

Figures

Figure 3-1: Water supply flow diagram – Coonabarabran	2
Figure 3-2: Coonabarabran - Filtered water turbidity CCP (CBN1)	5
Figure 3-3: Coonabarabran - Clear water free chlorine CCP	5
Figure 3-4: Coonabarabran - Reticulation free chlorine CCP (CBN5)	6
Figure 3-5: Coonabarabran - Reticulation turbidity OCP (CBN6)	6
Figure 4-1: Water supply flow diagram – Baradine	9
Figure 4-2: Treated water turbidity (BDN1) – Baradine	11
Figure 4-3: Treated water free chlorine (BDN2) – Baradine	11
Figure 4-4: Reticulation free chlorine (BDN5) – Baradine	12
Figure 4-5: Distribution turbidity (BDN6) – Baradine	12
Figure 4-6: Treated water iron – Baradine	14
Figure 5-1: Water supply flow diagram – Kenebri	16
Figure 5-2: Treated water free chlorine (KBI1) – Kenebri	18

Figure 5-3: Reticulation free chlorine (KBI3) – Kenebri	. 18
Figure 5-4: Distribution turbidity (KBI4) – Kenebri	. 19
Figure 6-1: Water supply flow diagram – Bugaldie	. 21
Figure 6-2: Reservoir free chlorine (BUG1) – Bugaldie	. 23
Figure 6-3: Reticulation free chlorine (BUG3) – Bugaldie	. 23
Figure 6-4: Distribution turbidity (BUG4) – Bugaldie	. 24
Figure 7-1: Water supply flow diagram – Mendooran	. 26
Figure 7-2: Filtered water turbidity (MDN1) – Mendooran	. 28
Figure 7-3: Clear water free chlorine (MDN2) – Mendooran	. 28
Figure 7-4: Reticulation free chlorine (MDN4) – Mendooran	. 29
Figure 7-5: Clear water pH (MDN5) – Mendooran	. 29
Figure 7-6: Reticulation turbidity (MDN7) – Mendooran	. 30
Figure 8-1: Water supply flow diagram – Coolah	. 34
Figure 8-2: Chlorine disinfection (CLH1) – Coolah	. 36
Figure 8-3: Reticulation free chlorine (CLH4) – Coolah	. 36
Figure 8-4: Reticulation turbidity (CLH5) – Coolah	. 37
Figure 9-1: Water supply flow diagram – Binnaway	. 40
Figure 9-2: Filtered water turbidity (BWY1) – Binnaway	. 42
Figure 9-3: Clear water free chlorine (BWY2) – Binnaway	. 42
Figure 9-4: Distribution free chlorine (BWY5) – Binnaway	. 43
Figure 9-5: Distribution turbidity (BWY6) – Binnaway	. 43
Figure 10-1: Water supply flow diagram – Dunedoo	. 46
Figure 10-2: Reservoir free chlorine (DDO1) – Dunedoo	. 48
Figure 10-3: Distribution free chlorine (DDO3) – Dunedoo	. 48
Figure 10-4: Distribution turbidity (DDO4) – Dunedoo	. 49
Figure 12-1: Improvement plan progress	. 52
Figure A-1. Coonabarabran pH	A-1
Figure A-2. Coonabarabran total coliforms	A-1
Figure B-1. Baradine treated water pH	B-1
Figure B-2. Baradine reticulation pH	B-1
Figure B-3. Baradine reticulation free chlorine	B-2
Figure B-4. Baradine verification total coliforms	B-2
Figure B-5. Baradine verification total chlorine	B-3
Figure C-1. Kenebri reticulation pH	C-1
Figure C-2. Kenebri verification total coliforms	C-1
Figure D-1. Bugaldie reticulation pH	D-1

Figure D-2. Bugaldie verification iron	D-1
Figure D-3. Bugaldie verification total coliforms	D-2
Figure E-1. Mendooran operational pH	E-1
Figure E-2. Mendooran reticulation pH	E-1
Figure E-3. Mendooran verification total coliforms	E-2
Figure E-4. Mendooran verification TDS	E-2
Figure E-5. Mendooran verification hardness	E-3
Figure F-1. Coolah reticulation pH	F-1
Figure F-2. Coolah verification <i>E. coli</i>	F-1
Figure F-3. Coolah verification total coliforms	F-2
Figure F-4. Coolah verification total hardness	F-2
Figure G-1. Binnaway treated water colour	G-1
Figure G-2. Binnaway raw water pH	G-1
Figure G-3. Binnaway reticulation pH	G-2
Figure G-4. Binnaway verification sodium	G-2
Figure G-5. Binnaway verification total coliforms	G-3
Figure G-6. Binnaway verification TDS	G-3
Figure G-7. Binnaway verification total hardness	G-4
Figure H-1. Dunedoo reticulation pH	H-1
Figure H-2. Dunedoo verification total coliforms	H-1
Figure H-3. Dunedoo verification total hardness	H-2
Figure H-4. Dunedoo verification TDS	H-2

1 Report Purpose

This Annual Report documents Warrumbungle Shire Council's DWMS implementation for the period 1 August 2018 to 31 July 2019. It has been prepared to support the reporting (Element 10), evaluation (Element 11) and review and continual improvement (Element 12) requirements of the DWMS.

This report includes the following areas:

- Performance of critical control points
- Water quality review
- Consumer complaints
- Water quality incidents
- Staff development and training
- Improvement plan implementation

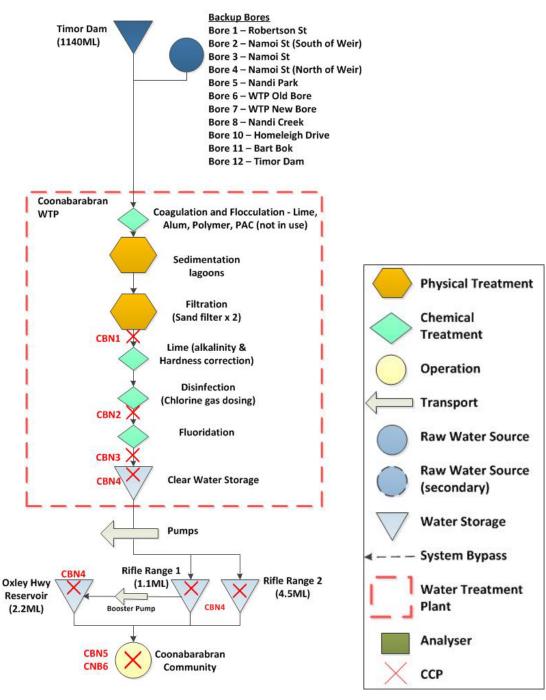
A review of system performance has been made against Australian Drinking Water Guidelines (2011), levels of service and other regulatory requirements (Element 1).

2 DWMS document control

Updates to the DWMS documentation have been summarised in Table 2-1.

Table 2-1. DWMS document control

Document	Version	Updates	Submitted to NSW Health and date submitted?
Warrumbungle Shire Council Drinking Water Management System	October 2014	None	
CCP reference guide	June 2019	Updates to limits and protocols	As part of March 2019 quarterly water quality meeting


3 Coonabarabran

3.1 Scheme summary

The Coonabarabran water supply system comprises:

- Source water: Castlereagh River (Timor Dam, Poundyard Weir), supplementary bores
- Treatment: WTP with coagulation (alum, polymer), flocculation, sedimentation (x2 lagoons), sand bed filtration (x2 filters), pH correction (lime), chlorine gas disinfection and fluoridation (currently off-line).
- Number of residential connections: 1152
- Number of non-residential connections: 238

Figure 3-1: Water supply flow diagram – Coonabarabran

Improvement works undertaken from August 2018 to July 2019 for the Coonabarabran water supply include:

- Telemetry Upgrades
- Clear water tank & reservoir upgrades
- Upgrades to chlorine room
- WTP Renewals/improvements
- Cap old bore
- New bores (Table 3-1)

Table 3-1. Summary of new bore numbers, names/locations and depths - Coonabarabran

1Robertson Street222Namoi Street, South of river243Namoi Street, North of river, old (closest to White Street)904Namoi Street, North of river, new (closest to river)265Nandi Park486WTP*, old397WTP*, new888Nandi Creek1509Morrissey's Corner – discontinued/not equipped due to insufficient yield150	depths, pores
3Namoi Street, North of river, old (closest to White Street)904Namoi Street, North of river, new (closest to river)265Nandi Park486WTP*, old397WTP*, new888Nandi Creek150	
4 Namoi Street, North of river, new (closest to river) 26 5 Nandi Park 48 6 WTP*, old 39 7 WTP*, new 88 8 Nandi Creek 150	
5 Nandi Park 48 6 WTP*, old 39 7 WTP*, new 88 8 Nandi Creek 150	
6 WTP*, old 39 7 WTP*, new 88 8 Nandi Creek 150	
7 WTP*, new 88 8 Nandi Creek 150	
8 Nandi Creek 150	
9 Morrissey's Corner – discontinued/not equipped due to insufficient yield 150	
10Home leigh Drive150	
11 Bart Bok 136	
12New bore at Timor Dam150	

* WTP – Water Treatment Plant Coonabarabran

3.2 Critical control points

The CCPs for Coonabarabran are shown in Table 3-2. These CCPs are regularly reviewed in quarterly water quality meetings as part of the ORANA water utilities alliance. A summary of changes made is shown in Table 3-3.

Table 3-2. Summary of critical control points and critical operational points – Coonabarabran

CCP ID	Critical Control Point	Control Parameter	Target	Alert Level	Critical Limit
CBN1	Filtration	Turbidity	<0.3 NTU	>0.5 NTU	>0.7 NTU
CBN2	Disinfection (gas)	Chlorine	2.0 – 3.5 mg/L	<1.8 mg/L, >3.5 mg/L	<1.5 mg/L, >4.0 mg/L
CBN3	Fluoridation	Fluoride	1 mg/L (leaving WFP, leaving reservoir and throughout distribution system)	< 0.9 mg/L for >72hrs > 1.1 mg/L	<0.9 mg/L for >72hrs >1.5 mg/L 0.0 mg/L for >24hrs
CBN4	Reservoirs	Reservoir integrity	No breach of integrity (hatches locked, no holes in meshing)	-	Breach of integrity identified
CBN5	Distribution	Chlorine	0.6 - 3.0 mg/L	< 0.4 mg/L, >3.5 mg/L	< 0.2 mg/L, or >4 mg/L
CBN6	Distribution (OCP)	NTU	<1.0 NTU	>1.0 NTU	>4.0 NTU

Date	ССР	Limit	Old	New	Reason for change
8 March 2019 Water Quality Meeting	CBN3 Fluoridation	Alert Level	<0.9 mg/L or >1.1 mg/L (calculated daily concentration) OR <0.9 mg/L or > 1.2 mg/L measured concentration	<0.9 mg/L for >72hrs	Recommendation/ action item from last meeting to be in line with the NSW Health Form 5 requirements
		Critical Limit	>1.5 mg/L (calculated daily concentration) OR >1.4 mg/L (concentration leaving reservoir)	>1.5 mg/L, 0.0 mg/L for >24hrs	-
	CBN2	Target	2.0 – 3.5 mg/L	2.0 – 3.0 mg/L	Recommendation/acti
	Disinfection	Alert Level	<2.0 or >4.0 mg/L	<1.8 or >3.5 mg/L	 on item from last meeting to prevent low chlorine residual in
		Critical Limit	<1.8 or >4.5 mg/L	<1.5 or >4.0 mg/L	reticulation system
	CBN5	Target	0.6 - 3.5 mg/L	0.6 – 3.0 mg/L	
	Distribution	Alert Level	< 0.4 mg/L, >4.0 mg/L	<0.4 mg/L, > 3.5mg/l	-
		Critical Limit	< 0.2 mg/L, or >4.5 mg/L	< 0.2mg/L, or > 4.0 mg/L	-

Table 3-3. Summary of critical control points changes – Coonabarabran

Critical control point performance for the reporting period is graphed in Figure 3-2, Figure 3-3 and Figure 3-4.

The fluoridation plant was offline during the reporting period.

Inspections of the reservoir CCP are not currently being undertaken due to WHS issues. Development of a reservoir inspection SOP is included as an action item in the improvement plan and is currently in progress.

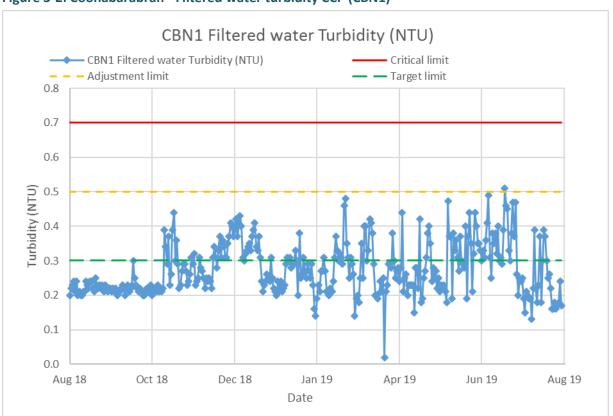
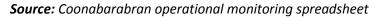
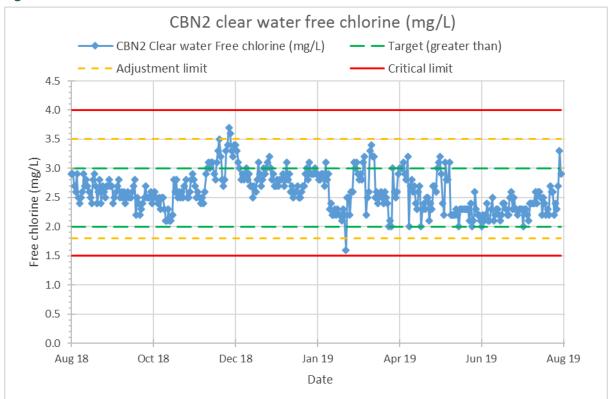




Figure 3-2: Coonabarabran - Filtered water turbidity CCP (CBN1)

Figure 3-3: Coonabarabran - Clear water free chlorine CCP

Source: Coonabarabran operational monitoring spreadsheet

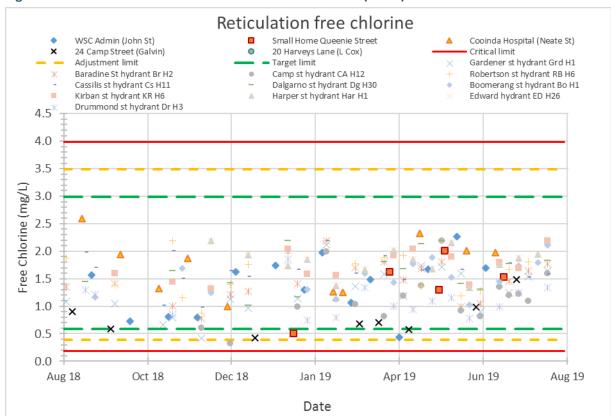
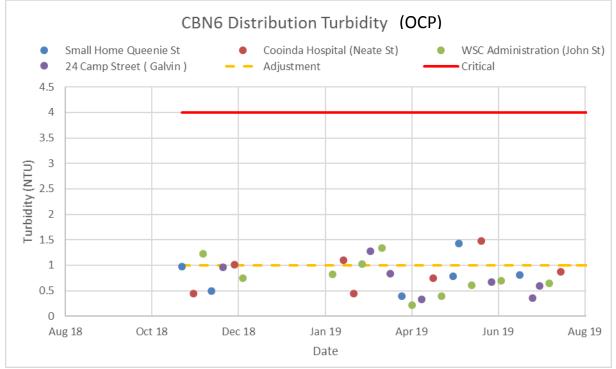
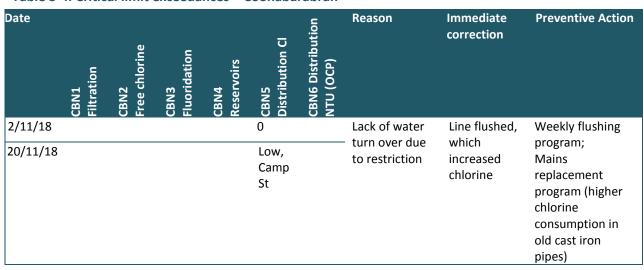



Figure 3-4: Coonabarabran - Reticulation free chlorine CCP (CBN5)

Source: Coonabarabran operational monitoring spreadsheet


Figure 3-5: Coonabarabran - Reticulation turbidity OCP (CBN6)

Source: 2018 and 2019 Verification monitoring spreadsheets

3.3 Critical limit exceedance

Critical limit exceedances in the reporting period are detailed in Table 3-4. CBN4 reservoir integrity was not inspected due to WHS concerns. The fluoridation plant was offline during the reporting period.

Table 3-4. Critical limit exceedances – Coonabarabran

3.4 Water quality

This section includes a review of water quality data for the Coonabarabran water supply system from the reporting period, 1 August 2018 to 31 July 2019, including data collected as part of the NSW Health drinking water monitoring system program.

3.4.1 Data collection

The Coonabarabran scheme operational water quality monitoring plan is shown in Table 3-5.

Process	ССР/ОСР	Parameter	Unit	Frequency
Timor line Raw water		Turbidity	NTU	Daily
		Colour	HU	Daily
		рН		Daily
Poundyard Raw water		Turbidity	NTU	Daily
		Colour	HU	Daily
		рН		Daily
Settled water		Turbidity	NTU	Daily
		Colour	HU	Daily
		рН		Daily
Filtered water	CBN1	Turbidity	NTU	Daily
		Colour	HU	Daily
		рН		Daily
Clear water		Turbidity	NTU	Daily
		Colour	HU	Daily
		рН		Daily
	CBN2	Free chlorine	mg/L	Daily
	CBN3	Fluoride	mg/L	Daily (when
				operational)
Reticulation	CBN5	Free chlorine	mg/L	Weekly
		Total Chlorine	mg/L	Weekly
		рН		Weekly
	CBN6 (OCP)	Turbidity	mg/L	Weekly

 Table 3-5. Monitoring undertaken for Coonabarabran water supply system

3.4.2 Water quality issues

Monitoring of Coonabarabran water supply system detected no exceptions with ADWG health and aesthetic guidelines. There were three samples with detections of total coliforms.

3.5 Consumer water quality complaints/enquires

A summary of customer complaints and enquiries is shown in Table 3-6. There were 5 water quality complaints concerning dirty water in Coonabarabran (October 2018, March 2019 and May 2019.

Complaints/Enquires	Туре	Number
Water Quality	Complaints	5
Water Main (looks (bursts)	Enquiry	13
Water Main (leaks /bursts)	Complaints	1
Water (pressure / lack of water)	Enquiry	12
Water restrictions	Enquiry	3
Water Mater	Enquiry	35
Water Meter	Complaints	4

 Table 3-6. Summary of water quality customer complaints / enquiries – Coonabarabran

3.6 Water quality incidents/emergencies

There were no water quality incidents or emergencies in the Coonabarabran water supply system in the reporting period.

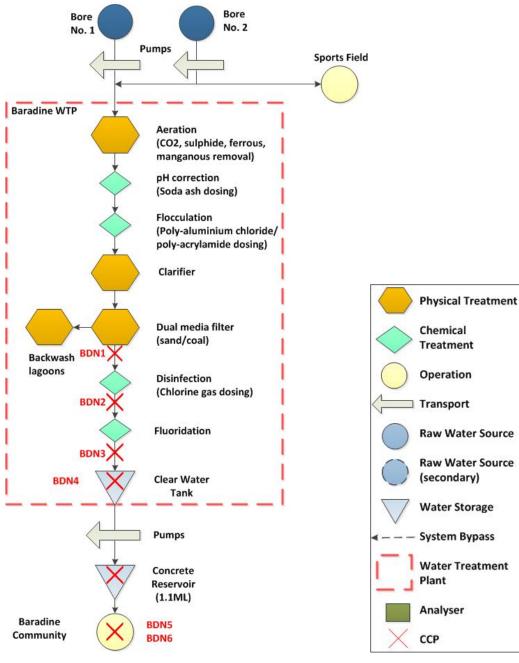
3.7 Reservoir inspections

Details of reservoir inspections undertaken from August 2018 to July 2019 are shown in Table 3-7.

Informal visual inspections of the reservoirs by the WTP operators were also undertaken approximately on a weekly basis.

Date	Reservoirs inspected	Findings	Corrective actions
06/02/2019	Coonabarabran Rifle Range No. 1 Reservoir	There is significant corroded items present in the reservoir.	Project planning and budgeting is in progress.
05/02/2019	Coonabarabran Rifle Range No. 2 Reservoir	The platform/hatch areas are unsealed against contamination.	Project planning and budgeting is in progress.
06/02/2019	Coonabarabran WTP CWT	The entry hatch is unsealed against natural or deliberate contamination.	New access hatch installed.

Table 3-7. Summary of reservoir inspections - Coonabarabran


4 Baradine

4.1 Scheme summary

The Baradine water supply system comprises:

- Source water: Bore
- Treatment: WTP with aeration, pH correction (soda ash), flocculation (PACI, electrolyte), clarification, sand bed filtration (x1 filter), backwash/sludge lagoons, chlorine gas disinfection and fluoridation (currently off-line).
- Distribution note: rising main = distribution main, reservoir inlet = reservoir outlet
- Number of residential connections: 320
- Number of non-residential connections: 51

Figure 4-1: Water supply flow diagram – Baradine

Improvement works undertaken from August 2018 to July 2019 for the Baradine water supply include:

- Removal of Dead Ends
- Concrete cap old bore
- WTP Renewals & Improvements
- Telemetry Upgrades
- Clear water tank & reservoir upgrades
- Upgrades to chlorine room

4.2 Critical control points

The CCPs for Baradine are shown in Table 3-2. These CCPs are regularly reviewed in quarterly water quality meetings as part of the ORANA water utilities alliance. A summary of changes made is shown in Table 4-2.

CCP ID	Critical Control Point	Control Parameter	Target	Alert Level	Critical Limit
BDN1	Filtration	Turbidity	<0.3 NTU	>0.5 NTU	>0.8 NTU
BDN2	Disinfection (gas)	Chlorine	1.4 – 1.9 mg/L	<1.2 mg/L, >2.5 mg/L	<1.0 mg/L, >4.0 mg/L
BDN3	Fluoridation	Fluoride	1 mg/L (leaving WTP, leaving reservoir and throughout distribution system)	< 0.9 mg/L for >24hrs > 1.1 mg/L	<0.9 mg/L for >72hrs >1.5 mg/L 0.0 mg/L for >24hrs
BDN4	Reservoirs	Reservoir integrity	No breach of integrity (hatches locked, no holes in meshing)	-	Breach of integrity identified
BDN5	Distribution	Chlorine	>0.8 mg/L, <2.0 mg/L	<0.5 mg/L, >2.5 mg/L	<0.2 mg/L, >4.0 mg/L
BND6	Distribution (OCP)	NTU	<1.0 NTU	>1.0 NTU	>4.0 NTU

Table 4-1. Summary of critical control points – Baradine

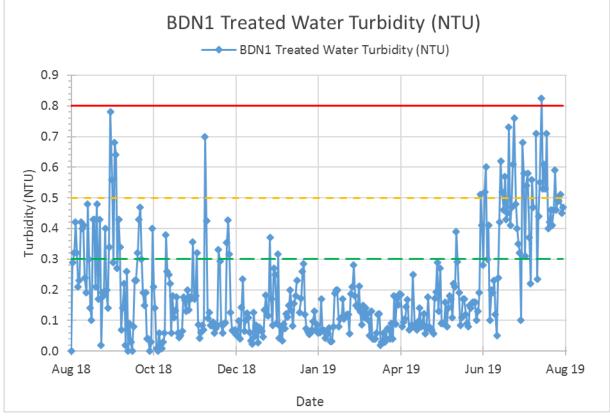
Table 4-2. Summary of critical control points changes – Baradine

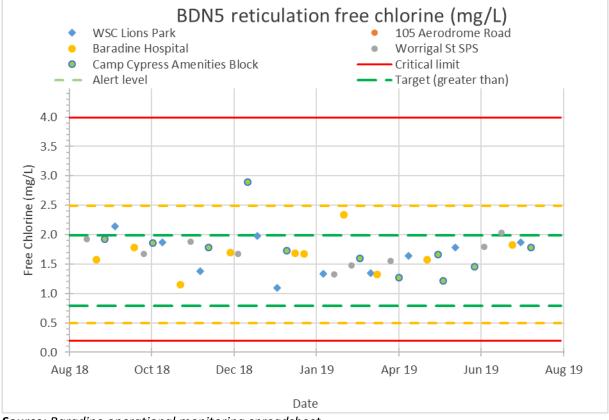
Date	ССР	Limit	Old	New	Reason for change
8 March 2019 BDN2	Target	1.4 – 1.5 mg/L	1.4 – 1.9 mg/L	Upper target level	
Water Quality Meeting	•	Alert Level	<1.2 mg/L, >2.0 mg/L	<1.2 mg/L, >2.5 mg/L	 now in line with operational levels.
		Critical Limit	<0.8 mg/L, >4.0 mg/L	<1.0 mg/L, >4.0 mg/L	Increased to increase CT.

Critical control point performance for the reporting period is graphed in Figure 4-2, Figure 4-3, Figure 4-4 and Figure 4-5.

The fluoridation plant was offline during the reporting period.

Inspections of the reservoir CCP are not currently being undertaken. Development of a reservoir inspection SOP is included as an action item in the improvement plan and is currently in progress.





Figure 4-2: Treated water turbidity (BDN1) – Baradine

Source: Baradine operational monitoring spreadsheet

Figure 4-3: Treated water free chlorine (BDN2) – Baradine

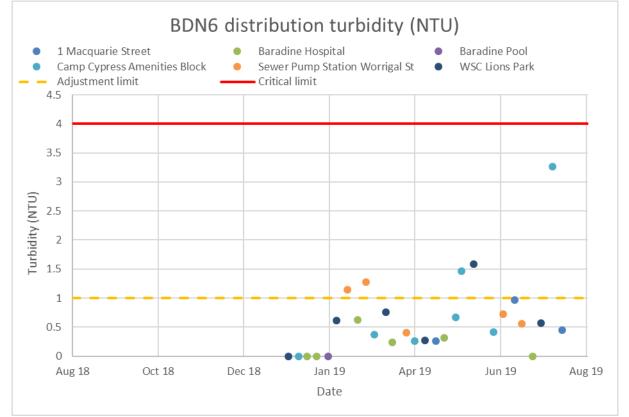

Source: Baradine operational monitoring spreadsheet

Figure 4-4: Reticulation free chlorine (BDN5) – Baradine

Source: Baradine operational monitoring spreadsheet

Source: Baradine operational monitoring spreadsheet

4.3 Critical limit exceedance

Critical limit exceedances in the reporting period are detailed in Table 4-2. BDN4 reservoir integrity was not inspected due to WHS concerns. The fluoridation plant was offline during the reporting period.

Date	BDN1 Filtration	BDN 2 Disinfection	BDN3 Fluoridation	BDN4 Reservoirs	BDN5 Distribution Cl	BDN6 Distribution NTU (OCP)	Reason	Immediate correction	Preventive Action
15/7/19	0.85 NTU						Assumed iron and manganese issue		Chlorine dose pre filter was unsuccessful; clarifier cleaned – no improvement; sought proposal from consultant to troubleshoot + arranged for filter inspection through NSW Health

Table 4-3. Critical limit exceedances – Baradine

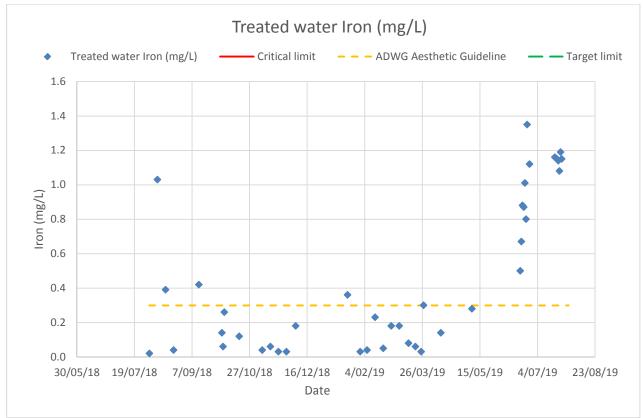
4.4 Water quality

This section includes a review of water quality data for the Baradine water supply system from the reporting period, 1 August 2018 to 31 July 2019, including data collected as part of the NSW Health drinking water monitoring system program.

4.4.1 Data collection

The Baradine scheme operational water quality monitoring plan is shown in Table 4-4.

	•			
Process	ССР /ОСР	Parameter	Unit	Frequency
Raw water		рН		Daily
Aerated Water		рН		Daily
Treated water		рН		Daily
	BDN2	Free Chlorine	mg/L	Daily
	BDN1	Turbidity	NTU	Daily
		Iron	mg/L	Weekly
		Manganese	mg/L	Weekly
	BDN5	Free Chlorine	mg/L	Weekly
Reticulation		Total Chlorine	mg/L	Weekly
		рН		Weekly
	BDN6	Turbidity	NTU	Weekly


Table 4-4. Monitoring undertaken for Baradine water supply system

4.4.2 Water quality issues

Monitoring of Baradine water supply detected two ADWG health exceptions for high chlorine (July and August 2018). Two total coliform detects occurred in April and May 2019.

An increase in treated water turbidity is seen from July 2019 due to issues with increased levels of iron (Figure 4-6) and manganese in the raw water.

4.5 Consumer water quality complaints/enquires

A summary of customer complaints and enquiries is shown in Table 4-5. There was one water quality complaint of dirty water in March 2019).

Complaints/Enquires	Туре	Number
Water Quality	Complaints	1
Water (pressure / lack of water)	Enquiry	1
Water restrictions	Enquiry	1
Water Main (leaks /bursts)	Enquiry	3
Water Meter	Enquiry	6

Table 4-5. Summary of water quality customer complaints / enquiries – Baradine

4.6 Water quality incidents/emergencies

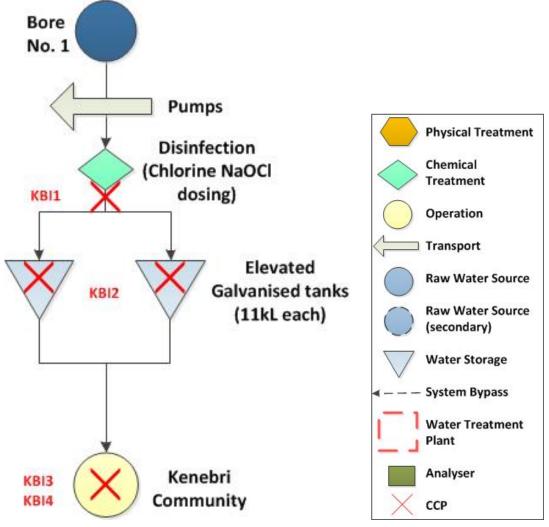
There were no water quality incidents or emergencies in the Baradine water supply system in the reporting period.

4.7 Reservoir inspections

Details of reservoir inspections undertaken from August 2018 to July 2019 are shown in Table 4-6. Informal visual inspections of the reservoirs by the WTP operators were also undertaken approximately on a weekly basis.

Table 4-6. Summary of reservoir inspections - Baradine

Date	Reservoirs inspected	Findings	Corrective actions
13-17/5/2019	Baradine WTP CWT	New access hatch installed and external wall sealing and vermin proof works undertaken.	-
13/02/2019	Baradine HL Reservoir	The entry hatch is unsealed against natural and deliberate contamination. The roof area is also unsealed.	The identified issues have been rectified. New access hatch installed.


5 Kenebri

5.1 Scheme summary

The Kenebri water supply system comprises:

- Source water: Bore
- Chlorination disinfection only (NaOCI)
- Number of residential connections: 15
- Number of non-residential connections: none

Figure 5-1: Water supply flow diagram – Kenebri

Improvement works undertaken from August 2018 to July 2019 for the Kenebri water supply include:

- Telemetry Upgrades
- Reservoir Replacement
- Upgrades to chlorine room

5.2 Critical control points

The CCPs for Kenebri are shown in Table 5-1. These CCPs are regularly reviewed in quarterly water quality meetings as part of the ORANA water utilities alliance. A summary of changes made is shown in Table 5-2.

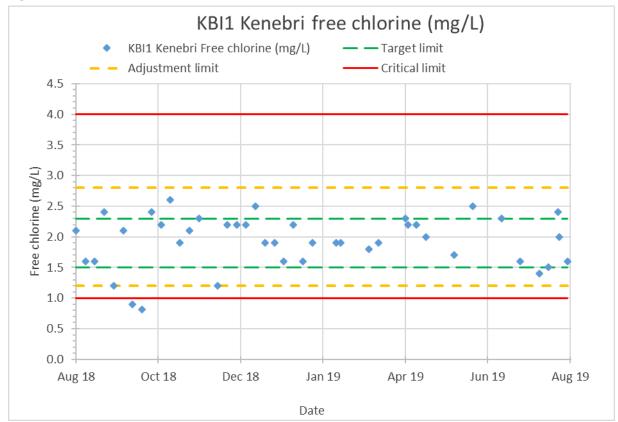

CCP ID	Critical Control Point	Control Parameter	Target	Alert Level	Critical Limit
KBI1	Disinfection (hypo)	Chlorine	1.5 – 2.3 mg/L	<1.2 mg/L, >2.8 mg/L	<1.0 mg/L, >4.0 mg/L
KBI2	Reservoirs	Reservoir integrity	No breach of integrity (hatches locked, no holes in meshing)	-	Breach of integrity identified
KBI3	Distribution	Chlorine	1.0- 2.0 mg/L	< 0.4 mg/L, >2.5 mg/L	< 0.2 mg/L, >4.0 mg/L
KBI4	Distribution (OCP)	NTU	<1.0 NTU	>1.0 NTU	>4.0 NTU

Table 5-1. Summary of critical control points – Kenebri

Date	ССР	Limit	Old	New	Reason for change
8 March 2019 Water Quality Meeting	KBI1 Disinfection	Target	1.8 mg/L - 2.0 mg/L	1.5 mg/L – 2.3 mg/L	Levels now in line with operational levels.

Critical control point performance for the reporting period is graphed in Figure 5-2, Figure 5-3 and Figure 5-4.

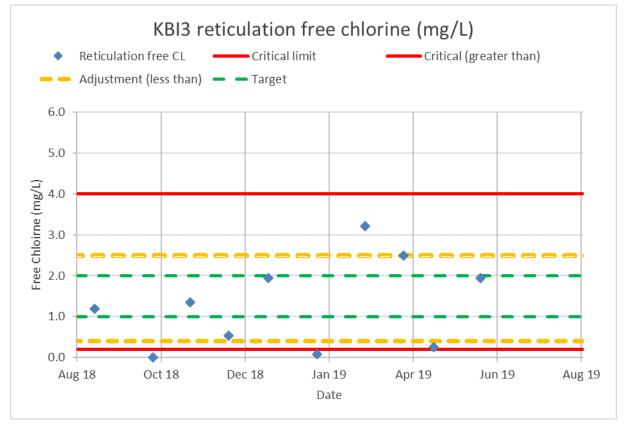

Inspections of the reservoir CCP are not currently being undertaken. Development of a reservoir inspection SOP is included as an action item in the improvement plan and is currently in progress.

Figure 5-2: Treated water free chlorine (KBI1) – Kenebri

Source: Kenebri operational monitoring spreadsheet

Source: Kenebri operational monitoring spreadsheet

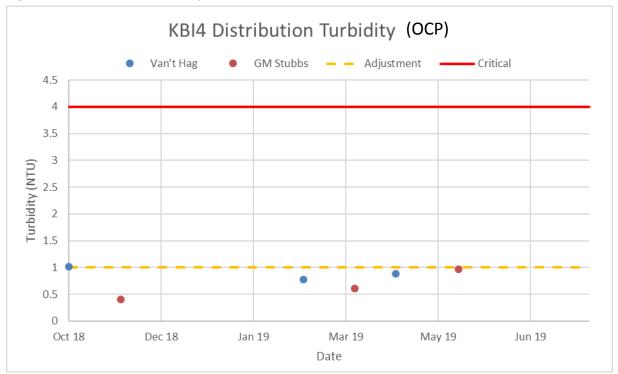


Figure 5-4: Distribution turbidity (KBI4) – Kenebri

5.3 Critical limit exceedance

A summary of critical limit exceedances is shown in Table 5-3. Inspections of the reservoir CCP were not undertaken.

Date	KBI1 Disinfection	KBI2 Reservoirs	KBI3 Distribution Cl	KBI4 Distribution NTU (OCP)	Reason	Immediate correction	Preventive Action
12/9/18	0.9				Cracked dosing line	Dosing line was repaired	Inline chlorine analyser installed with feedback to
19/9/18	0.8				Broken injector	Injector was repaired	bore pump
25/9/18			0		Broken main	Repair main and refill chlorine tank	

Table 5-3. Critical limit exceedances – Kenebri

5.4 Water quality

This section includes a review of water quality data for the Kenebri water supply system from the reporting period, 1 August 2018 to 31 July 2019, including data collected as part of the NSW Health drinking water monitoring system program.

5.4.1 Data collection

The Kenebri scheme operational water quality monitoring plan is shown in Table 5-4.

Table 5-4. Monitoring undertaken for Kenebri water supply system

Process	CCP/OCP	Parameter	Unit	Frequency
Treated water	KBI1	Free Chlorine	mg/L	Weekly

Warrumbungle Shire Council - 2018/19 Annual DWMS Review Report

Process	CCP/OCP	Parameter	Unit	Frequency
Reticulation	KBI3	Free Chlorine	mg/L	Monthly
		Total Chlorine	mg/L	Monthly
		рН		Monthly
	KBI4 (OCP)	Turbidity	NTU	Monthly

5.4.2 Water quality issues

Monitoring of Kenebri water supply system detected no exceptions with ADWG health and aesthetic guidelines. There was one sample where total coliforms were detected.

Low free chlorine was detected on a number of occasions (9% of samples).

5.5 Consumer water quality complaints/enquires

A summary of customer complaints and enquiries is shown in Table 5-5. There were no water quality complaints in Kenebri.

Table 5-5. Summary of water quality customer complaints / enquiries – Kenebri

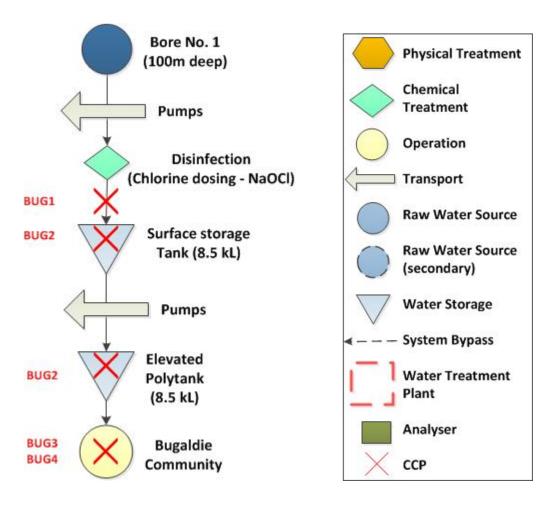
Complaints/Enquires	Туре	Number
Water Meter	Enquiry	1

5.6 Water quality incidents/emergencies

There were no water quality incidents or emergencies in the Kenebri water supply system in the reporting period.

5.7 Reservoir inspections

No reservoir inspections were undertaken at Kenebri from August 2018 to July 2019 are shown in Table 3-7.


6 Bugaldie

6.1 Scheme summary

The Bugaldie water supply system comprises:

- Source water: Bore
- Chlorination disinfection only (NaOCl)
- Number of residential connections: 12
- Number of non-residential connections: none

Figure 6-1: Water supply flow diagram – Bugaldie

Improvement works undertaken from August 2018 to July 2019 for the Bugaldie water supply include:

- Telemetry Upgrades
- Reservoir upgrades
- Upgrades to chlorine room

6.2 Critical control points

The CCPs for Bugaldie are shown in Table 6-1. These CCPs are regularly reviewed in quarterly water quality meetings as part of the ORANA water utilities alliance. A summary of changes made is shown in Table 6-2.

CCP ID	Critical Control Point	Control Parameter	Target	Alert Level	Critical Limit
BUG1	Disinfection (Hypo)	Chlorine	1.5 – 2.3 mg/L	< 1.2 mg/L >2.8 mg/L	< 1.0 mg/L, >4.0 mg/L
BUG2	Reservoirs	Reservoir integrity	No breach of integrity (hatches locked, no holes in meshing)	-	Breach of integrity identified
BUG3	Distribution	Chlorine		< 0.4 mg/L >2.5mg/L	< 0.2 mg/L, >4.0 mg/L
BUG4	Distribution (OCP)	NTU	<1.0 NTU	>1.0 NTU	>4.0 NTU

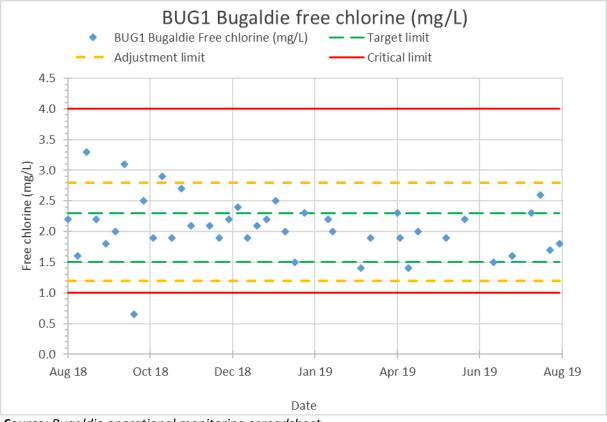

Table 6-1. Summary of critical control points – Bugaldie

Table 6-2. Summary of critical control points changes – Bugaldie

Date	ССР	Limit	Old	New	Reason for change
8 March 2019	BUG 1	Target	2.5 – 3.5 mg/L	1.5 mg/L – 2.3 mg/L	New values are in
Water Quality Meeting	Water Quality Disinfection Meeting		<2.0, >4.0 mg/L	<1.2 mg/L, >2.8 mg/L	 line with Kenebri CCPs.
		Critical Limit	<1.8, >4.5 mg/L	<1.0, >4.0 mg/L	

Critical control point performance for the reporting period is graphed in Figure 6-2, Figure 6-3 and Figure 6-4.

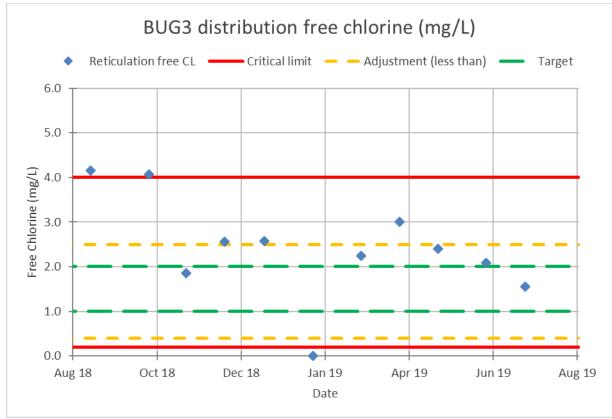

Inspections of the reservoir CCP are not currently being undertaken. Development of a reservoir inspection SOP is included as an action item in the improvement plan and is currently in progress.

Figure 6-2: Reservoir free chlorine (BUG1) – Bugaldie

Source: Bugaldie operational monitoring spreadsheet

Figure 6-3: Reticulation free chlorine (BUG3) – Bugaldie

Source: Bugaldie operational monitoring spreadsheet

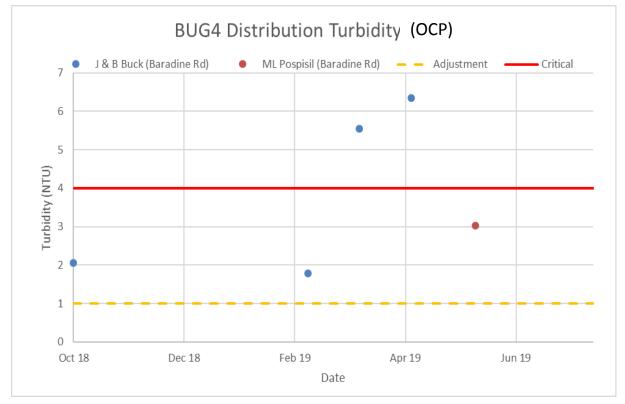
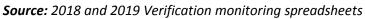



Figure 6-4: Distribution turbidity (BUG4) – Bugaldie

6.3 Critical limit exceedance

Reservoir integrity was not routinely inspected during the reporting period due to WHS concerns. It is noted that the reservoir CCP was noted to have integrity issues throughout the monitoring period.

Date	BUG1 Disinfection	BUG2 Reservoirs	BUG3 Distribution Cl	BUG4 Distribution NTU (OCP)	Reason	Immediate correction	Preventive Action
14/8/18			4.15		Pump dose rate high	Turn down dose rate	Installed online chlorine analyser
19/9/18	0.65				Pump failure	Replaced pump	with feedback to
25/9/18			4.07		Pump dose rate high	Turn down dose rate	bore pump
22/1/19			0		Blackout caused dosing pump to stop	Dosing pump reset	-
26/3/19				5.54	High levels of iron were also detected as part	Flushed	
23/4/19				6.35	of NSW Health reticulation monitoring		

Table 6-3. Critical limit exceedances – Bugaldie

6.4 Water quality

This section includes a review of water quality data for the Bugaldie water supply system from the reporting period, 1 August 2018 to 31 July 2019, including data collected as part of the NSW Health drinking water monitoring system program.

6.4.1 Data collection

The Bugaldie scheme operational water quality monitoring plan is shown in Table 6-4.

Process	CCP/OCP	Parameter	Unit	Frequency
Treated water	BUG1	Free Chlorine	mg/L	Weekly
Reticulation	BUG 3	Free Chlorine	mg/L	Monthly
		Total Chlorine	mg/L	Monthly
		рН		Monthly
	BUG 4 (OCP)	Turbidity	NTU	Monthly

6.4.2 Water quality issues

Monitoring of Bugaldie water supply detected exception against the ADWG aesthetic guidelines for high levels of iron and turbidity. There were also two occasions where total coliforms were detected.

6.5 Consumer water quality complaints/enquires

There were no water quality complaints at Bugaldie.

6.6 Water quality incidents/emergencies

There were no water quality incidents or emergencies in the Bugaldie water supply system in the reporting period.

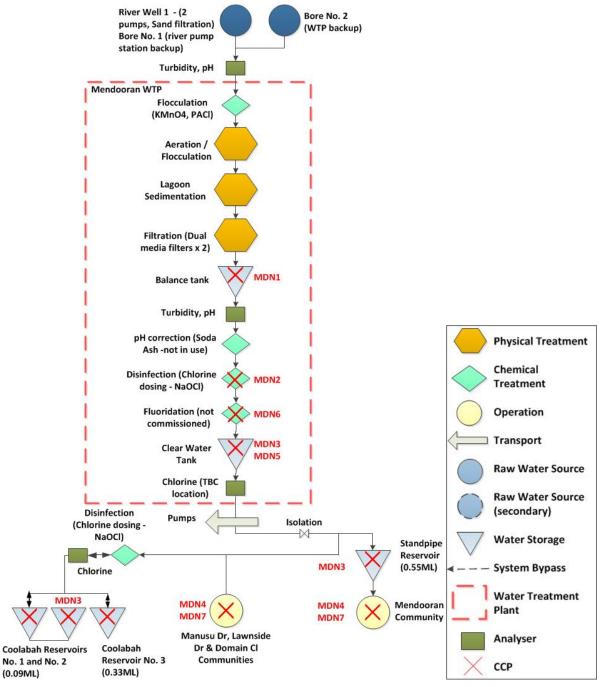
6.7 Reservoir inspections

Details of reservoir inspections undertaken from August 2018 to July 2019 are shown in Table 6-5.

Informal visual inspections of the reservoirs by the WTP operators were also undertaken approximately on a weekly basis.

Date	Reservoirs inspected	Findings	Corrective actions
7/02/2019	Bugaldie Reservoir	The roof area is unsealed in several areas – the internal areas of the reservoir could not	Project planning and budgeting is in progress.
		be inspected as there is no entry hatch.	

Table 6-5. Summary of reservoir inspections - Bugaldie


7 Mendooran

7.1 Scheme summary

The Mendooran water supply system comprises:

- Source water: Castlereagh River, back-up bore
- Treatment: WTP with oxidation (KMnO4), flocculation (PACI), Aeration (cascade), sedimentation (x2 lagoons), sand bed filtration (x2 filters), disinfection (NaOCI) and fluoridation (not yet commissioned).
- Number of residential connections:231
- Number of non-residential connections: none

Figure 7-1: Water supply flow diagram – Mendooran

Improvement works undertaken from August 2018 to July 2019 for the Mendooran water supply include:

- New bore
- Telemetry Upgrades
- Reservoir upgrades
- Upgrades to chlorine room

7.1 Critical control points

The CCPs for Mendooran are shown in Table 7-1. These CCPs are regularly reviewed in quarterly water quality meetings as part of the ORANA water utilities alliance. A summary of changes made is shown in Table 7-2.

CCP ID	Critical Control Point	Control Parameter	Target	Alert Level	Critical Limit
MDN1	Filtration	Turbidity	<0.2 NTU	>0.3 NTU	>0.5 NTU
MDN2	Disinfection (hypo)	Chlorine	1.5- 3.0 mg/L	<1.2 mg/L, >3.5 mg/L	<1.0 mg/L, >4.0 mg/L
MDN3	Reservoirs	Reservoir integrity	No breach of integrity (hatches locked, no holes in meshing)	-	Breach of integrity identified
MDN4	Distribution	Chlorine	0.7 – 2.0 mg/L	<0.4, >3.0 mg/L	< 0.2 mg/L, >4.0 mg/L
MDN5	Final pH (COP)	рН	7.5 – 8.3	7.0 - 8.4	6.5 – 8.5
MDN6	Fluoridation	Fluoride	1 mg/L (leaving WTP, leaving reservoir and throughout distribution system)	< 0.9 mg/L for >24hrs > 1.1 mg/L	>1.5 mg/L, <0.9 mg/L for >72hrs 0.0 mg/L for >24hrs
MDN7	Distribution (OCP)	Turbidity	<1.0	>1.0	>4.0

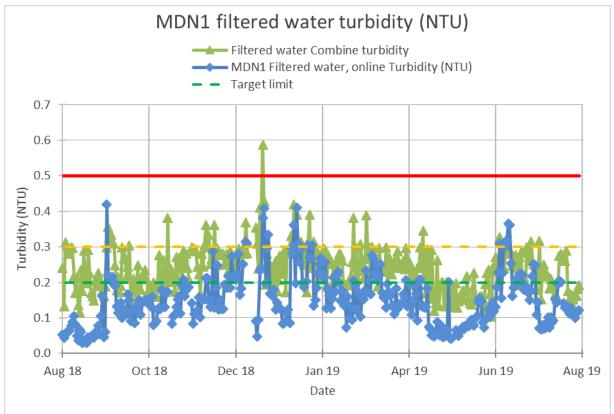
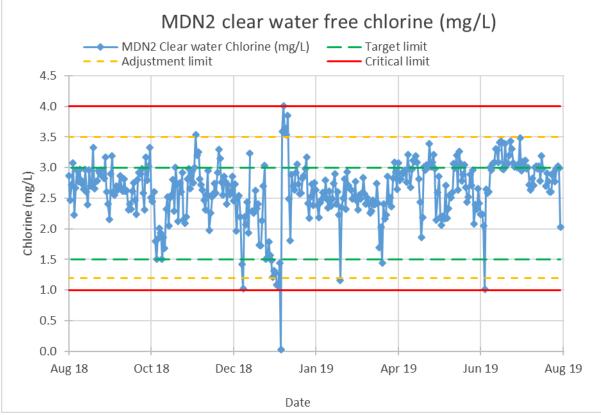
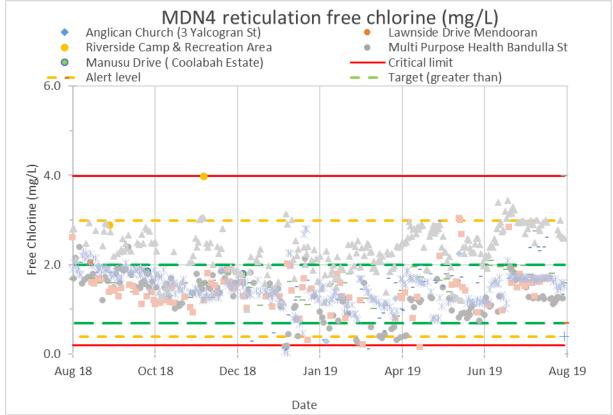

Table 7-1. Summary of critical control points – Mendooran

Table 7-2. Summary of critical control points changes – Mendooran

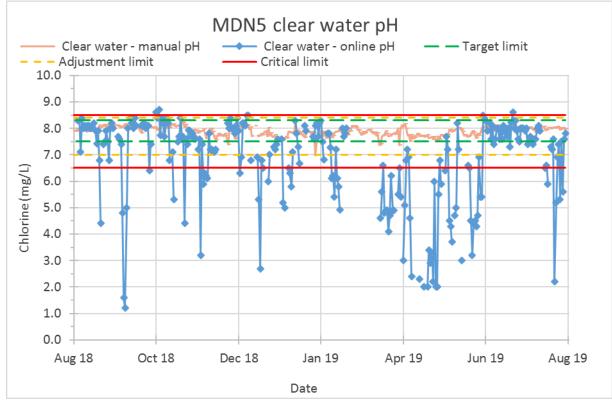
Date	ССР	Limit	Old	New	Reason for change
8 March	MDN2	Target	1.5- 2.5 mg/L	1.5- 3.0 mg/L	To reflect upper - operational values in
2019 Water Quality Meeting	Disinfection	Alert Level	<1.2 mg/L, >3.0 mg/L	<1.2 mg/L, >3.5 mg/L	target levels.
	MDN6 Distribution	Target	0.8 – 1.2 mg/L	0.7 – 2.0 mg/L	-

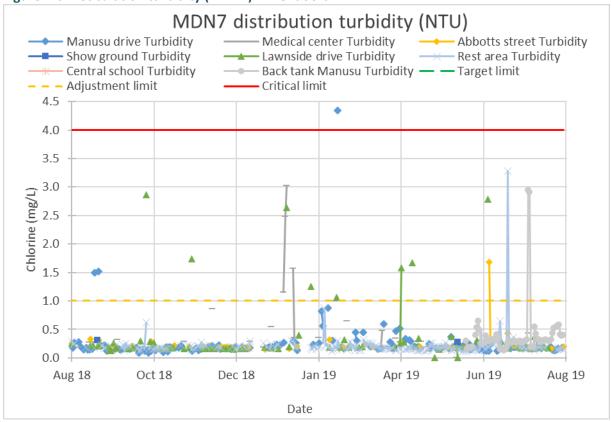
Critical control point performance for the reporting period is graphed in Figure 7-2, Figure 7-3, Figure 7-4, Figure 7-5 and Figure 7-6.


Inspections of the reservoir CCP are not currently being undertaken. Development of a reservoir inspection SOP is included as an action item in the improvement plan and is currently in progress.


Figure 7-2: Filtered water turbidity (MDN1) – Mendooran

Source: Mendooran operational monitoring spreadsheet


Source: Mendooran operational monitoring spreadsheet


Figure 7-4: Reticulation free chlorine (MDN4) – Mendooran

Source: Mendooran operational monitoring spreadsheet

Figure 7-5: Clear water pH (MDN5) – Mendooran

Source: Mendooran operational monitoring spreadsheet

Figure 7-6: Reticulation turbidity (MDN7) – Mendooran

Source: Mendooran operational monitoring spreadsheet

7.2 Critical limit exceedance

A summary of critical limit exceedances for Mendooran water supply system is shown in Table 7-3.

There were issues with the pH clear water analyser, with any readings above 8 reading incorrectly. The analyser was externally calibrated and unable to be fixed. The analyser has since been replaced (outside the reporting period).

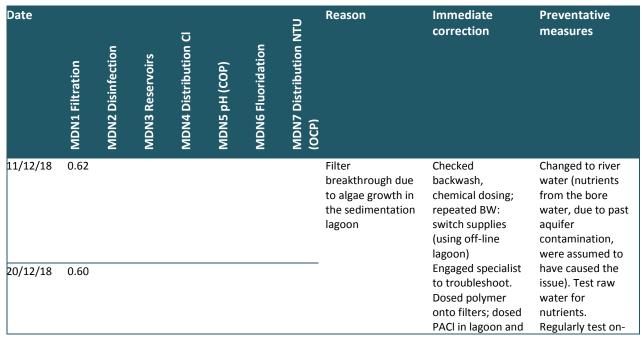


Table 7-3. Critical limit exceedances – Mendooran

Date	MDN1 Filtration	MDN2 Disinfection	MDN3 Reservoirs	MDN4 Distribution Cl	MDN5 pH (COP)	MDN6 Fluoridation	MDN7 Distribution NTU (OCP)	Reason	Immediate correction	Preventative measures
									settled water; reduced plant flow rate. Tested for algae in river & on-line lagoon	line lagoon for algae; investigate use of 'Phoslock' for bore water source; determine if/under which conditions bore water can be used in future (e.g. aeration)
5/1/19		0.03		0.17				Chlorine blockage	Cleaned lines	Maintenance of
6/1/19				0.12					Increased chlorine	chlorine line
7/1/19		4.01		0.18				Try to increase chlorine in retic	dose	
14/2/19							4.34		Flushed	
7/3/19				0.11				Caused by lack of	Flushed	Develop flushing
15/4/19				0.16				turnover		schedule; flush when alert is reached
27/5/19					8.5					
23/5/19					8.5					

7.3 Water quality

This section includes a review of water quality data for the Mendooran water supply system from the reporting period, 1 August 2018 to 31 July 2019, including data collected as part of the NSW Health drinking water monitoring system program.

7.3.1 Data collection

The Mendooran scheme operational water quality monitoring plan is shown in Table 7-4.

Process	CCP/COP/OCP	Parameter	Units	Frequency
Raw water		рН		Daily
		Turbidity	NTU	Daily
		Manganese	mg/L	Weekly
		Iron	mg/L	Weekly
Settled water		рН		Daily
		Colour		Daily
		Turbidity	NTU	Daily
Filtered water		рН	NTU	Daily
	MDN1	Turbidity	NTU	Daily
	MDN1	Turbidity	NTU	Online
Clear water	MDN5 (COP)	рН		Daily / online
		Turbidity	NTU	Daily
	MDN2	Chlorine	mg/L	Daily
		Manganese	mg/L	Daily
		Iron	mg/L	Daily

Table 7-4. Monitoring undertaken for Mendooran water supply system

MDN4 Free Chlorine m	h
	ng/L Weekly
Reticulation pH	Weekly
MDN7 (OCP) Turbidity N	TU Weekly

7.3.2 Water quality issues

Monitoring of Mendooran water supply detected exceptions against the ADWG aesthetic guidelines for high levels of total dissolved solids, total hardness and turbidity. There were also two occasions where total coliforms were detected.

7.4 Consumer water quality complaints/enquires

A summary of customer complaints and enquiries is shown in Table 7-5. There was one water quality in January 2019 complaint of sandy water.

Complaints/Enquires	Туре	Number
Water Quality	Enquiry	1
Water Meter	Enquiry	11
Water leak	Enquiry	6
Water restrictions	Enquiry	4
Water (pressure / lack of water)	Enquiry	2

 Table 7-5. Summary of water quality customer complaints / enquiries – Mendooran

7.5 Water quality incidents/emergencies

There were no water quality incidents or emergencies in the Mendooran water supply system in the reporting period.

7.6 Reservoir inspections

Details of reservoir inspections undertaken from August 2018 to July 2019 are shown in Table 7-6. Informal visual inspections of the reservoirs by the WTP operators were also undertaken approximately on a daily basis.

Date	Reservoirs inspected	Findings	Corrective actions
2/03/2019	Mendooran Cobra St Reservoir	The entry hatch has no raised or sealed edge and bird faecal material is present on the platform area - the overhead rescue system is attractive to roosting birds, so this faecal issue will be an ongoing problem until the entry hatch is upgraded.	The entry hatch has been upgraded and the centre roof vent area has been sealed off.
24/06/2019	Mendooran WTP CWT	The CWT has been effectively sealed against contamination ingress.	-
29/4-3/5/19	Mendooran Reservoir Coolabah No. 1	Installed new access hatch to seal against contamination ingress.	-
29/4-3/5/19	Mendooran Reservoir Coolabah No. 2	Installed new access hatch to seal against contamination ingress.	-
29/4-3/5/19	Mendooran	Installed new access hatch and filling of	-

Table 7-6. Summary of reservoir inspections - Mendooran

Date	Reservoirs inspected	Findings	Corrective actions
	Reservoir	gaps to seal against contamination ingress.	
	Coolabah No. 3		


8 Coolah

8.1 Scheme summary

The Coolah water supply system comprises:

- Source water: Bore
- Chlorination disinfection only (gas); fluoridation not yet commissioned
- Number of residential connections: 393
- Number of non-residential connections: 94

Figure 8-1: Water supply flow diagram – Coolah

Improvement works undertaken from August 2018 to July 2019 for the Coolah water supply include:

- New Bore
- Sealing of Coolah bore
- Coolah reservoirs refurbishments
- Telemetry Upgrades
- Upgrades to chlorine room

8.2 Critical control points

The CCPs for Coolah are shown in Table 8-1. These CCPs are regularly reviewed in quarterly water quality meetings as part of the ORANA water utilities alliance. A summary of changes made is shown in Table 8-2.

ССР	Critical	Control	Target	Alert Level	Critical Limit
ID	Control Point	Parameter			
CLH1	Disinfection (gas)	Chlorine	1.0 – 2.2 mg/L	<0.7 mg/L, >3.0 mg/L	<0.4 mg/L, >4.0 mg/L
CLH2	Reservoirs	Reservoir integrity	No breach of integrity (hatches locked, no holes in meshing)	-	Breach of integrity identified
CLH3	Fluoridation	Fluoride	1 mg/L (leaving WFP, leaving reservoir and throughout distribution system)	0.9 mg/L for >24hrs 1.1 mg/L	<0.9 mg/L for >72hrs >1.5 mg/L 0.0 mg/L for >24hrs
CLH4	Distribution	Chlorine	1.0 – 2.0 mg/L	<0.7 mg/L, >3.0 mg/L	< 0.2 mg/L, >4.0 mg/L
CLH5	Distribution (OCP)	Turbidity	<1.0 NTU	>1.0 NTU	>4.0 NTU

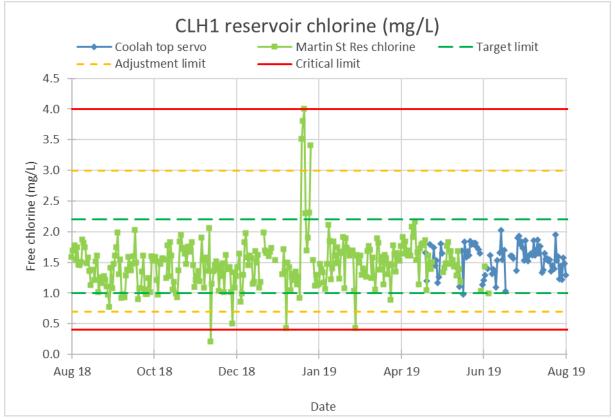
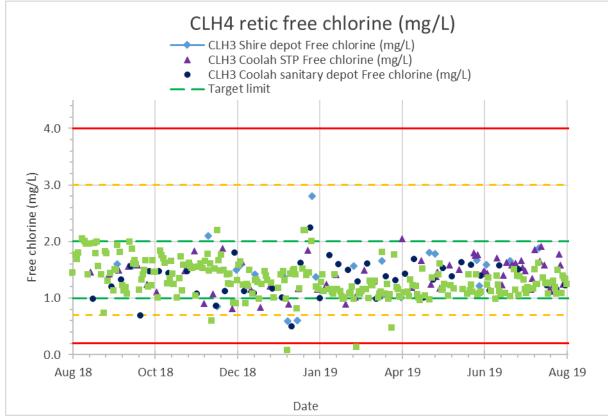
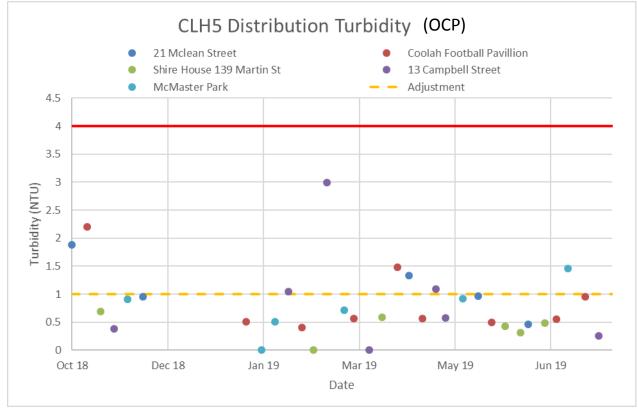

Table 8-1. Summary of critical control points – Coolah

Table 8-2. Summary of critical control points changes – Coolah

Date	ССР	Limit	Old	New	Reason for change
8 March 2019 Water Quality Meeting	CLH1 Disinfection	Target	1.5 – 1.8 mg/L	1.0 – 2.2 mg/L	To reflect operational — values in target/alert
		Alert Level	<1.3 mg/L, >2.0 mg/L	<0.7 mg/L, >3.0 mg/L	levels, new low critical limit of 0.4
		Critical Limit	<0.8 mg/L, >4.0 mg/L	<0.4 mg/L, >4.0 mg/L	mg/L still allows for a CT of 18 min*mg/L.
	CLH4 Distribution	Target	1.0 – 1.2 mg/L	1.0 – 2.0 mg/L	To reflect operational — values in target/alert levels and have one low critical limit of
		Alert Level	<0.9 mg/L, >2.0 mg/L	<0.7 mg/L, >3.0 mg/L	
		Critical Limit	<0.5 mg/L, >4.0 mg/L	<0.2 mg/L, >4.0 mg/L	0.2 mg/L across all systems.

Critical control point performance for the reporting period is graphed in Figure 8-2, Figure 8-3 and Figure 8-4.


The fluoridation plant was offline during the reporting period.


Figure 8-2: Chlorine disinfection (CLH1) – Coolah

Source: Coolah operational monitoring spreadsheet

Source: Coolah operational monitoring spreadsheet

Figure 8-4: Reticulation turbidity (CLH5) – Coolah

Source: 2018 and 2019 Verification monitoring spreadsheets

8.3 Critical limit exceedance

Table 8-3. Critical limit exceedances – Coolah

Date	CLH1 Disinfection	CLH2 Reservoirs	CLH3 Distribution Cl	CLH4 Fluoridation	CLH5 Distribution NTU (OCP)	Reason	Immediate correction	Preventive Action
12/11/18	0.2					Lack of chlorine Campbell St	Changed bottle over to almost empty bottle	Ensure adequate supply of chlorine in future; purchase of scales; installation of online chlorine analyser in retic (Chloroclam) sending SMS alarms
17/1/19						Possums in	Remove animals	Re-establish
						reservoir	from reservoirs	reservoir integrity
27/2/19			0.11			Sampling error	Staff training	Staff training

8.4 Water quality

This section includes a review of water quality data for the Coolah water supply system from the reporting period, 1 August 2018 to 31 July 2019, including data collected as part of the NSW Health drinking water monitoring system program.

8.4.1 Data collection

The Coolah scheme operational water quality monitoring plan is shown in Table 8-4.

Process	Critical Control Points	Parameter	Units	Frequency
Martin St res	CLH4	Free chlorine	mg/L	24/7 via Chloroclam
		рН		Daily
Coolah top servo	CLH1	Free chlorine	mg/L	Daily
		рН		Daily
		ntu		Daily
Wentworth Ave	CLH4	Free chlorine	mg/L	3/week
Resrevoir		рН		3/week
		NTU		3/week
Coolah Shire depot	CLH4	Free chlorine	mg/L	Twice weekly
		рН		Twice weekly
		NTU		Twice weekly
Coolah STP	CLH4	Free chlorine	mg/L	Weekly
		рН		Weekly
Coolah sanitary	CLH4	Free chlorine	mg/L	Weekly
depot		рН		Weekly

Table 8-4. Monitoring undertaken for Coolah water supply system

8.4.2 Water quality issues

E. coli was detected on 15 January in the Coolah water supply system. A boil water alert was issued on the 17 January (refer to section 8.6 for further details). Chlorine was increased as a result leading to high chlorine levels in the reservoir.

Monitoring also detected low free chlorines (two samples) and total coliforms (three samples). Exceptions against the ADWG aesthetic guidelines for total hardness was detected on two occasions.

8.5 Consumer water quality complaints/enquires

A summary of customer complaints and enquiries is shown in Table 8-5. There was one water quality complaints of unusable water in May 2019.

Table 8-5. Summary of water quality customer complaints / enquiries – Coolah

Complaints/Enquires	Туре	Number
Water Quality	Complaints	1
Water Main (leaks /bursts)	Enquiry	21
	Enquiry	5
Water (pressure / lack of water)	Complaints	1
Water restrictions	Enquiry	1
Water Meter	Enquiry	52

8.6 Water quality incidents/emergencies

A summary of incidents in the Coolah water supply are shown in Table 8-6

Table 8-6. Summary of incident and emergencies, recommendations and preventive actions

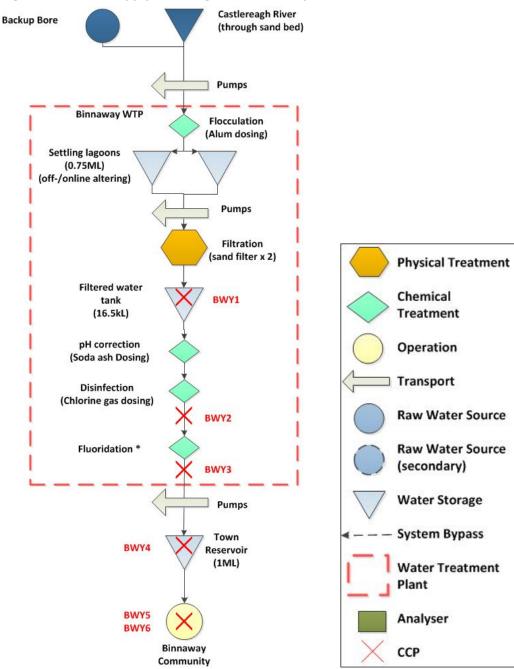
Details of incident/emergency	Investigation recommendations	Preventive action undertaken
E. coli detected in Coolah reservoir	Possums were found in the	Cleaning and vermin proofing of
on 17 January 2019	reservoir	reservoirs
Boil water alert		Reservoir inspection SOP in
		progress

8.7 Reservoir inspections

Details of reservoir inspections undertaken from August 2018 to July 2019 are shown in Table 8-7. Informal visual inspections of the reservoirs by the operators were also undertaken approximately on a daily basis.

Date	Reservoirs inspected	Findings	Corrective actions
20/02/2019	Coolah Martin St Reservoir	The inspection and cleaning of this reservoir was requested due to a poor sample being taken. Significant water quality risks were present around this reservoir.	The identified issues have been rectified. New access hatch installed.
05/02/2019	Coolah Wentworth Ave No. 1 Reservoir	No water quality issues noted. Entry hatch needs lock.	Entry hatch is now locked.
05/02/2019	Coolah Wentworth Ave No. 2 Reservoir	No water quality issues noted. Entry hatch needs lock.	Entry hatch is now locked.

Table 8-7. Summary of reservoir inspections - Coolah


9 Binnaway

9.1 Scheme summary

The Binnaway water supply system comprises:

- Source water: Castlereagh River
- Treatment: WTP with flocculation (alum), sedimentation (x2 lagoons), sand bed filtration (x2 filters), pH correction (soda ash), chlorine gas disinfection and fluoridation (currently off-line).
- Number of residential connections: 289
- Number of non-residential connections: 1

Figure 9-1: Water supply flow diagram – Binnaway

Improvement works undertaken from August 2018 to July 2019 for the Binnaway water supply include:

- New Bore
- Telemetry Upgrades
- Clear water tank & reservoir upgrades
- Upgrades to chlorine room

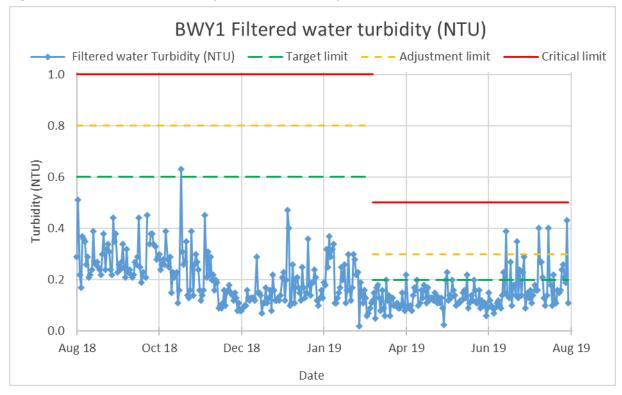
9.2 Critical control points

The CCPs for Binnaway are shown in Table 9-1. These CCPs are regularly reviewed in quarterly water quality meetings as part of the ORANA water utilities alliance. A summary of changes made is shown in Table 9-2.

CCP ID	Critical Control Point	Control Parameter	Target	Alert Level	Critical Limit
BWY1	Filtration	Turbidity	<0.2 NTU	>0.3 NTU	>0.5 NTU
BWY2	Disinfection (gas)	Chlorine	2.0 mg/L – 3.2 mg/L	<1.5 mg/L, >3.6 mg/L	<1.0 mg/L, > 4.0 mg/L
BWY3	Fluoridation	Fluoride	1 mg/L (leaving WFP, leaving reservoir and throughout distribution system)	< 0.9 mg/L for >24hrs > 1.1 mg/L	<0.9 mg/L for >72hrs >1.5 mg/L 0.0 mg/L for >24hrs
BWY4	Reservoirs	Reservoir integrity	No breach of integrity (hatches locked, no holes in meshing)	-	Breach of integrity identified
BWY5	Distribution	Chlorine	0.8 – 2.0 mg/L	< 0.5 mg/L, >2.5 mg/L	< 0.2 mg/L, >4.0 mg/L
BWY6	Distribution (OCP)	Turbidity	<1.0 NTU	>1.0 NTU	>4.0 NTU

Table 9-1. Summary of critical control points – Binnaway

Table 9-2. Summary of critical control points changes – Binnaway


Date	ССР	Limit	Old	New	Reason for change
8 March 2019 Water Quality Meeting	BWY2 Disinfection	Target	1.8 mg/L - 2.0 mg/L	2.0 mg/L – 3.2 mg/L	Upper target level now in line with operational levels.
		Alert Level	<1.5 mg/L, >2.5 mg/L	<1.5 mg/L, >3.6 mg/L	
	BWY1	Target	< 0.6 NTU	< 0.2 NTU	In line with
	Filtration	Adjustment	> 0.8 NTU	> 0.3 NTU	Guidance
		Critical	> 1.0 NTU	> 0.5 NTU	-

Critical control point performance for the reporting period is graphed in Figure 9-2, Figure 9-3, Figure 9-4 and Figure 9-5.

Inspections of the reservoir CCP are not currently being undertaken. Development of a reservoir inspection SOP is included as an action item in the improvement plan and is currently in progress.

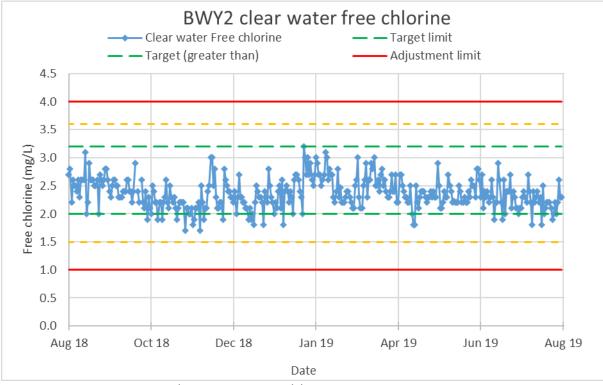
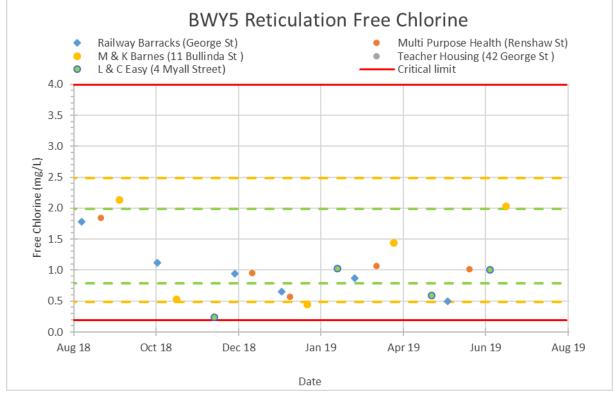

The fluoridation plant was offline during the reporting period.

Figure 9-2: Filtered water turbidity (BWY1) – Binnaway



Source: Binnaway operational monitoring spreadsheet

Source: Binnaway operational monitoring spreadsheet

Figure 9-4: Distribution free chlorine (BWY5) – Binnaway

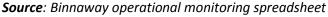
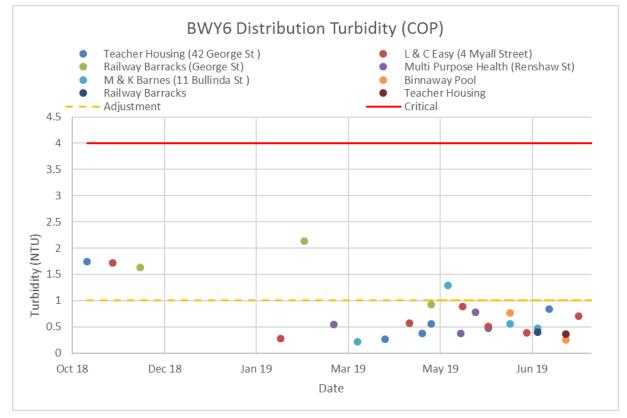



Figure 9-5: Distribution turbidity (BWY6) – Binnaway

Source: 2018 and 2019 Verification monitoring spreadsheets

9.3 Critical limit exceedance

No CCP exceptions were recorded for Binnaway during the reporting period.

No formal CCP reservoir inspections were undertaken.

9.4 Water quality

This section includes a review of water quality data for the Binnaway water supply system from the reporting period, 1 August 2018 to 31 July 2019, including data collected as part of the NSW Health drinking water monitoring system program.

9.4.1 Data collection

The Binnaway scheme operational water quality monitoring plan is shown in Table 8-4.

	0	,		
Process	CCP/OCP	Parameter	Unit	Frequency
Raw water		Turbidity	NTU	Daily
		Colour	HU	Daily
		рН		Daily
Settled water		Turbidity	NTU	Daily
		Colour	HU	Daily
		рН		Daily
		Temp		Daily
Filtered water	BWY1	Turbidity	NTU	Daily
		Colour	HU	Daily
		Free chlorine	mg/L	Daily
		рН		Daily
Clear water		Turbidity	NTU	Daily
		Colour	HU	Daily
		рН		Daily
	BWY2	Free chlorine	mg/L	Daily
Reticulation	BWY5	Free chlorine	mg/L	Weekly
		рН		Weekly
	BWY6 (OCP)	Turbidity	NTU	Weekly

Table 9-3. Monitoring undertaken for Binnaway water supply system

9.4.2 Water quality issues

Monitoring of Binnaway water supply detected exceptions with ADWG aesthetic guidelines exceptions for total dissolved solids, total hardness, pH and sodium, there were no ADWG health guideline exceptions. There was one occasion where total coliforms were detected.

9.5 Consumer water quality complaints/enquires

A summary of customer complaints and enquiries is shown in Table 9-4. There were 2 water quality complaints concerning dirty water in Binnaway (August and October 2018).

Table 9-4. Summary	of water	quality	, customer	complaints /	enquiries – Binnaway

Complaints/Enquires	Туре	Number
Water Quality	Complaints	2
Water (pressure / lack of water)	Enquiry	1
Water restrictions (leaks /bursts)	Enquiry	1

Complaints/Enquires	Туре	Number
Water Main (leaks /bursts)	Enquiry	1
Water Meter	Enquiry	13

9.6 Water quality incidents/emergencies

There were no water quality incidents or emergencies in the Binnaway water supply system in the reporting period.

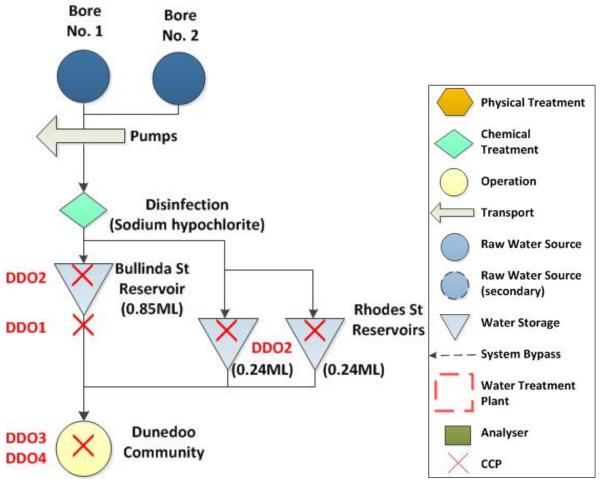
9.7 Reservoir inspections

Details of reservoir inspections undertaken from August 2018 to July 2019 are shown in Table 3-7.

Informal visual inspections of the reservoirs by the WTP operators were also undertaken approximately on a daily basis.

Table 9-5. Summary of reservoir inspections - Binnaway

Date	Reservoirs inspected	Findings	Corrective actions
3/02/209	Binnaway Reservoir	The entry hatch is unsealed around the edges and leaves and debris are entering via the unsealed ridge caps.	This tank still needs to be renovated. Project planning and budgeting is in progress.


10 Dunedoo

10.1 Scheme summary

The Dunedoo water supply system comprises:

- Source water: Bore
- Chlorination disinfection only (NaOCl); fluoridation not needed due to natural occurrence
- Number of residential connections: 388
- Number of non-residential connections: 81

Figure 10-1: Water supply flow diagram – Dunedoo

Improvement works undertaken from August 2018 to July 2019 for the Dunedoo water supply include:

- Telemetry Upgrades
- Reservoir upgrades
- Upgrades to chlorine room

10.2 Critical control points

The CCPs for Dunedoo are shown in Table 10-1. These CCPs are regularly reviewed in quarterly water quality meetings as part of the ORANA water utilities alliance. A summary of changes made is shown in Table 10-2.

CCP ID	Critical Control Point	Control Parameter	Target	Alert Level	Critical Limit
DDO1	Disinfection (hypo)	Chlorine	1.1 – 2.2 mg/L	<0.9 mg/L, >3.0 mg/L	<0.7 mg/L, >4.0 mg/L
DDO2	Reservoirs	Reservoir integrity	No breach of integrity (hatches locked, no holes in meshing)	-	Breach of integrity identified
DDO3	Distribution	Chlorine	1.0 – 2.0 mg/L	<0.5 mg/L, >3.0 mg/L	< 0.2 mg/L, >4.0 mg/L
DDO4	Distribution (OCP)	NTU	<1.0 NTU	>1.0 NTU	>4.0 NTU

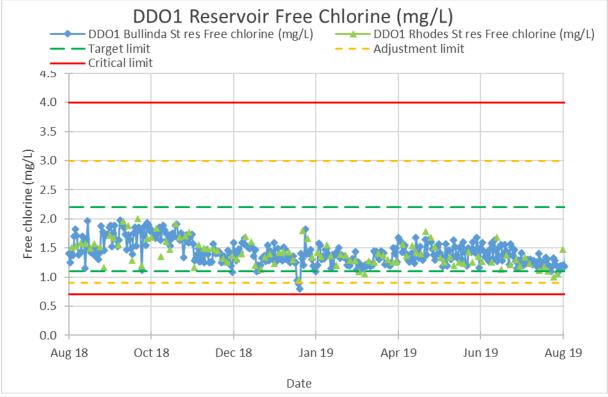
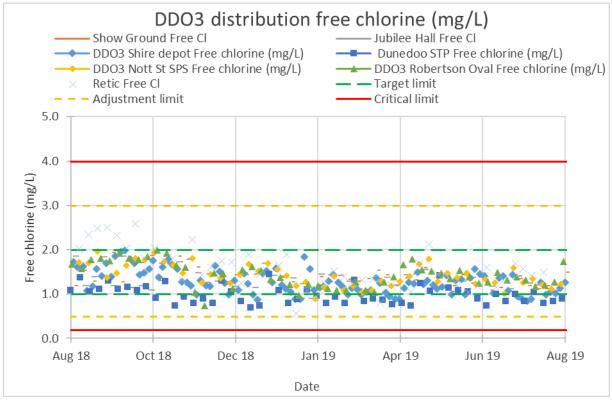
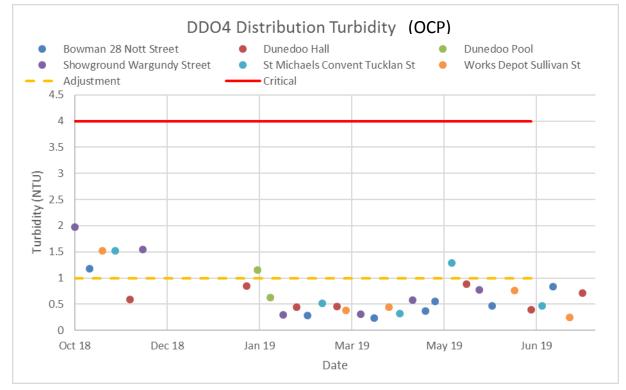

Table 10-1. Summary of critical control points and critical operational points – Dunedoo

Table 10-2. Summary of critical control points changes – Dunedoo

Date	ССР	Limit	Old	New	Reason for change
8 March	DDO1 Disinfection	Target	1.5 – 1.8 mg/L	1.1 – 2.2 mg/L	To reflect operational values
2019 Water Quality Meeting		Alert Level	<1.2 mg/L, >2.5 mg/L	<0.9 mg/L, >3.0 mg/L	values
		Critical Limit	<1.0 mg/L, >4.0 mg/L	<0.7 mg/L, >4.0 mg/L	Critical limit of 0.7 mg/L still allows for a CT of >15 min*mg/L.
	DDO3	Target	1.0 – 1.5 mg/L	1.0 – 2.0 mg/L	To reflect operational values
	Distribution	Alert Level	<0.9 mg/L, >2.5 mg/L	<0.5 mg/L, >3.0 mg/L	values
		Critical Limit	<0.5 mg/L, >4.0 mg/L	<0.2 mg/L, >4.0 mg/L	To have one low critical limit of 0.2 mg/L across all systems.

Critical control point performance for the reporting period is graphed in Figure 10-2, Figure 10-3 and Figure 10-4.


Inspections of the reservoir CCP are not currently being undertaken. Development of a reservoir inspection SOP is included as an action item in the improvement plan and is currently in progress.


Figure 10-2: Reservoir free chlorine (DDO1) – Dunedoo

Source: Binnaway operational monitoring spreadsheet

Source: Binnaway operational monitoring spreadsheet

Figure 10-4: Distribution turbidity (DDO4) – Dunedoo

10.3 Critical limit exceedance

There were no CCP exceptions for the Dunedoo water supply system. Inspections of the reservoir CCP are not currently being undertaken.

10.4 Water quality

This section includes a review of water quality data for the Dunedoo water supply system from the reporting period, 1 August 2018 to 31 July 2019, including data collected as part of the NSW Health drinking water monitoring system program.

10.4.1 Data collection

The Dunedoo scheme operational water quality monitoring plan is shown in Table 10-3.

	-			
Process	CCP/OCP	Parameter	Unit	Frequency
Reservoir	DDO1	Free chlorine	mg/L	Daily
		рН		Daily
Reticulation	DDO3	Free chlorine	mg/L	Weekly
		рН		Weekly
	DDO4 (OCP)	Turbidity		

Table 10-3. Monitoring undertaken for Dunedoo water supply system

10.4.2 Water quality issues

Monitoring of Dunedoo water supply detected two exception ADWG aesthetic guidelines exceptions for total dissolved solids and total hardness. There were also two occasions where total coliforms were detected.

10.5 Consumer water quality complaints/enquires

A summary of customer complaints and enquiries is shown in Table 10-4.

Table 10-4. Summary of water quality customer complaints / enquiries – Dunedoo

Complaints/Enquires	Туре	Number
Water Main (leaks /bursts)	Enquiry	14
Water (pressure / lack of water)	Enquiry	3
Water Meter	Enquiry	15

10.6 Water quality incidents/emergencies

There were no water quality incidents or emergencies in the Dunedoo water supply system in the reporting period.

10.7 Reservoir inspections

Details of reservoir inspections undertaken from August 2018 to July 2019 are shown in Table 10-5.

Informal visual inspections of the reservoirs by the WTP operators were also undertaken approximately on a weekly basis.

Table 10-5. Summary of reservoir inspections - Dunedoo

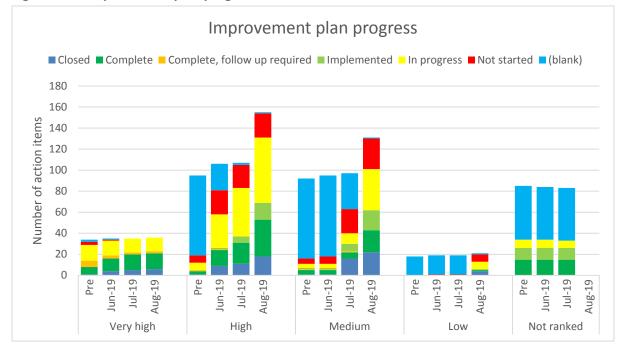
Date	Reservoirs inspected	Findings	Corrective actions
04/02/2019	Dunedoo – Rhodes No. 1 Reservoir	The roof is at risk of failure due to the corrosion on the rafters and design. There is a significant amount of bird faeces on the roof and platform areas which are unsealed	The entry hatch edges have been mastic sealed and the roof sheet edges have also been sealed off.
04/02/2019	Dunedoo – Rhodes No. 2 Reservoir	The roof is at risk of failure due to the corrosion on the rafters and design. There is a significant amount of bird faeces on the roof and platform areas which are unsealed.	The roof edges have been sealed.
02/02/2019	Dunedoo - Bullinda Reservoir	No water quality issues noted.	New access hatch installed.

11 Staff development and training

A summary of training undertaken by water staff from 1 August 2018 to 31 July 2019 is shown in Table 11-1.

Table 11-1. Summary of staff training

Row Labels	Name
AQF3 Chemical Handling Accreditation –	Jason Rand
SpraySmart	Matthew Gilbert
	Scott Watton
Asbestos Awareness	Jason Rand
Certificate III Water Operations – TAFE (completed)	David Birdling
Code of conduct – Local Government Professionals	Andrew Park
	Cornelia Wiebels
	David Birdling
	Dean Lewin
	Graham Richardson
	Jason Rand
	Martin Gordon
	Matthew Gilbert


Row Labels	Name
	Scott Stanley
	Scott Watton
	Selina Xu
Enter and work in confined spaces – TAFE	Cornelia Wiebels
	Graham Richardson
	Andrew Milford
	Andrew Park
	David Birdling
	Jason Rand
	Martin Gordon
	Matthew Gilbert
	Scott Watton
Introduction to Project Management - LGNSW	Cornelia Wiebels
Part 1 – Chemical Dosing Systems – DPI Water	Graham Richardson
	Martin Gordon
Part 1 – Wastewater Treatment Operations – DPI	Martin Gordon
Water	Andrew Park
	David Birdling
Work safely at heights – TAFE	Andrew Milford
	Cornelia Wiebels
	Graham Richardson
	Jason Rand
	Martin Gordon
	David Birdling
	Matthew Gilbert

12 DWMS continuous improvement plan

Councils improvement plan was consolidated and then reviewed in three facilitated meetings (June, July and August 2019). The current water quality improvement plan is attached to this report

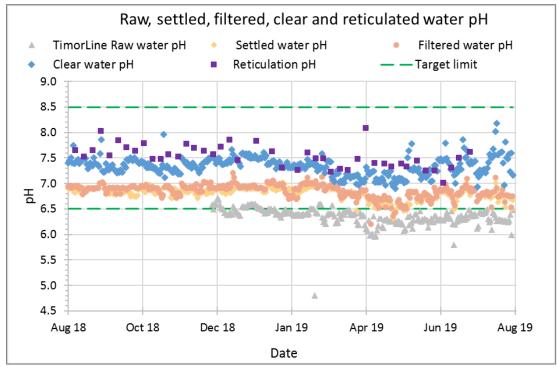
Row Labels	Closed	Complete / implemented	Complete, follow up required	In progress	Not started
Very high	6	15	2	13	
High	18	51		62	23
Medium	23	40		39	29
Low	4	2		7	7
Total	51	108	2	121	59

Table 12-1. Water quality improvement plan status

Figure 12-1: Improvement plan progress

13 Review of DWMS implementation

A summary of DWMS reviews is included in Table 13-1.


Date	Attendance	Scope	Findings	Actions
25/1/2019	Council, NSW Health, NSW DIPE	Water quality review meeting	Review of water quality data,	
1/03/2019	Council, NSW DIPE	Water quality review meeting	CCPs were reviewed and updated Review of water quality data	
28/6/2019	Atom Consulting, Council, NSW Health, NSW DIPE	Review of water quality improvement plan (very high- and high-level priority actions)	Progress of actions reviewed	Timelines and responsibility assigned
30/07/2019	Atom Consulting, Council	Review of water quality improvement plan (high and medium priority actions)	Progress of actions reviewed	Timelines and responsibility assigned

Appendix A Coonabarabran water quality data

A.1 Water quality graphs

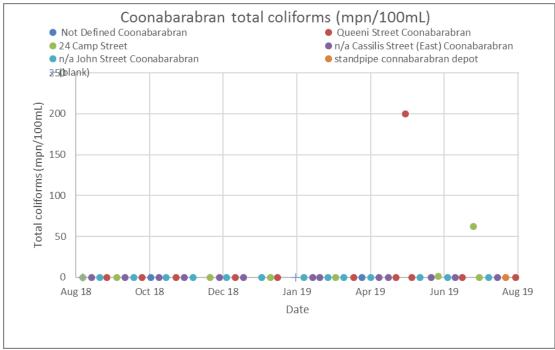

A.1.1 Operational monitoring graphs

Figure A-1. Coonabarabran pH

A.1.2 NSW Health verification monitoring graphs

A.2 Water quality data summary

Source/Sample Point	Parameter	Min	Avg	Max	Lower critical limit	Upper critical limit	No. of samples	ССР	
Raw Water Quality									
Timor line Raw water	Turbidity (NTU)	0.13	0.87	4.50			247		
Timor line Raw water	Colour (HU)	0.00	0.00	0.00			247		
Timor Line Raw water	рН	4.80	6.35	6.71			247		
Settled Water Quality									
Settled water	Turbidity (NTU)	0.14	0.62	2.80			365		
Settled water	Colour (HU)	0.00	0.00	0.00			365		
Settled water	рН	6.31	6.82	7.13			363		
Filtered Water Quality									
Filtered water	Turbidity (NTU)	0.02	0.28	0.51		0.7	365	CBN1	
Filtered water	Colour (HU)	0.00	0.00	0.00			365		
Filtered water	рН	6.20	6.85	7.20			364		
Treated Water Quality									
Clear water	Turbidity (NTU)	0.29	0.58	2.04		1.0	365		
Clear water	Colour (HU)	0.00	0.00	0.00			365		
Clear water	рН	6.90	7.34	8.18			364		
Clear water	Free chlorine (mg/L)	1.60	2.60	3.70	1.5	4.0	365	CBN2	
Clear water	Fluoride (mg/L)	0.00		0.00		1.5	0	CBN3	
Bugaldie	Free chlorine (mg/L)	0.65	2.06	3.30	1.0	4.0	41	BUG1	
Kenebri	Free chlorine (mg/L)	0.81	1.92	2.60	1.0	4.0	42	KBI1	
Reticulation Monitoring									
WSC Admin (John St)	Free Chlorine (mg/L)	0.45	1.38	2.28	0.2	4.0	14	CBN5	
WSC Admin (John St)	Total Chlorine (mg/L)	0.55	1.83	2.53			8		
WSC Admin (John St)	рН	7.01	7.53	8.08			14		
Small Home Queenie Street	Free Chlorine (mg/L)	0.52	1.41	2.02	0.2	4.5	5	CBN5	
Small Home Queenie Street	Total Chlorine (mg/L)	0.63	1.59	2.31			5		
Small Home Queenie Street	рН	7.33	7.46	7.62			5		
24 Camp Street (Galvin)	Free Chlorine (mg/L)	0.00	0.71	1.50	0.2	4.5	9	CBN5	
24 Camp Street (Galvin)	Total Chlorine (mg/L)	0.45	0.70	0.81	_	_	4	_	
24 Camp Street (Galvin)	рН	7.23	7.48	7.79			10		
Cooinda Hospital (Neate St)	Free Chlorine (mg/L)	1.01	1.76	2.60	0.2	4.5	10	CBN5	
Cooinda Hospital (Neate St)	Total Chlorine (mg/L)	1.36	1.95	2.70			4		

Table A-1. Coonabarabran operational monitoring data summary

Source/Sample Point	Parameter	Min	Avg	Max	Lower critical limit	Upper critical limit	No. of samples	ССР
Cooinda Hospital (Neate St)	рН	7.25	7.50	7.84			10	

Source: Coonabarabran operational monitoring spreadsheet

A.2.1 Verification monitoring

For the new WTP Verification data taken from the NSW Health database, from 1 August 2018 to 31 July 2019 was analysed for the Coonabarabran water system. Any microbiological readings '< 1' were taken as zero, all other less than readings were taken as half of their upper limits, that is '< 0.1' became '0.05'. Values listed as greater than were taken as their lower limit, '> 200' became '200'. A summary of key verification data is shown in Table A-2.

ADWG aesthetic guideline exceedances are highlighted blue and ADWG health exceedances or microbiological detections are highlighted orange.

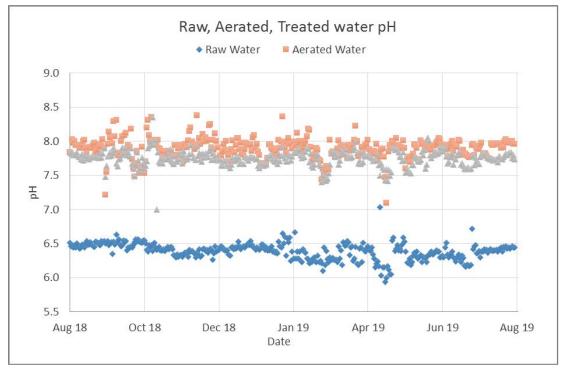
Characteristic	Guideline Value (Health		Min	5 th %ile	Median		Max	Samples	Exce	ptions
	or Aesthetic)]		76lle		е				
Aluminium (mg/L)	0.2	А	0.02	0.02	0.04	0.04	0.04	3	0	0%
Antimony (mg/L)	0.003	Н	0.001	0.001	0.001	0.001	0.001	3	0	0%
Arsenic (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	3	0	0%
Barium (mg/L)	2	Н	0.02	0.02	0.02	0.03	0.03	3	0	0%
Boron (mg/L)	4	Н	0.05	0.05	0.05	0.05	0.05	3	0	0%
Cadmium (mg/L)	0.002	Н	0.0003	0.0003	0.0003	0.0003	0.0003	3	0	0%
Calcium (mg/L)			19	19	22	22	22	3	0	0%
Chloride (mg/L)	250	А	12	12	16	16	16	3	0	0%
Chromium (mg/L)	0.05	Н	0.003	0.003	0.003	0.003	0.003	3	0	0%
Copper (mg/L)	2	Н	0.003	0.003	0.003	0.007	0.008	3	0	0%
E. coli	0	Н	0	0	0	0	0	53	0	0%
Fluoride (mg/L)	1.5	Н	0.05	0.05	0.05	0.05	0.05	4	0	0%
Free chlorine (mg/L) ¹			0.43	0.59	1.4	2.3	2.6	52	0	0%
lodine (mg/L)			0.01	0.01	0.02	0.02	0.02	3	0	0%
Iron (mg/L)	0.3	А	0.01	0.01	0.04	0.04	0.04	3	0	0%
Lead (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	3	0	0%
Magnesium (mg/L)	-		4.7	4.7	4.7	4.8	4.9	3	0	0%
Manganese (mg/L)	0.5	Н	0.003	0.003	0.007	0.007	0.007	3	0	0%
Mercury (mg/L)	0.001	Н	0.0001	0.0001	0.0001	0.0001	0.0001	3	0	0%
Molybdenum (mg/L)	0.05	Н	0.003	0.003	0.003	0.003	0.003	3	0	0%
Nickel (mg/L)	0.02	Н	0.005	0.005	0.005	0.005	0.005	3	0	0%
Nitrate (mg/L)	50	Н	1.0	1.0	1.0	1.0	1.0	3	0	0%
Nitrite (mg/L)	3	Н	0.05	0.05	0.05	0.05	0.05	3	0	0%
рН	8.5	А	7.0	7.2	7.5	7.9	8.2	57	0	0%
Selenium (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	3	0	0%
Silver (mg/L)	0.1	Н	0.001	0.001	0.001	0.001	0.001	3	0	0%
Sodium (mg/L)	180	А	10	10	13	13	13	3	0	0%
Sulfate (mg/L)	250	А	11	11	15	15	15	3	0	0%

Table A-2. Coonabarabran verification monitoring data summary

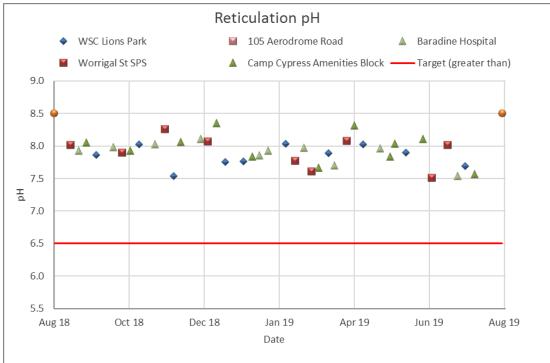
	Guideline Value (Health or Aesthetic)		Min	5 th %ile	Median	95 th %il e	Max	Samples	Exce	ptions
Temperature (oC)			22	22	23	28	31	32	10	0
Total Chlorine (mg/L)	5	Н	0.1	0.6	1.6	2.6	2.9	54	0	0%
Total Coliforms (cfu/10	00 mL)		0	0	0	0	200	53	3	6%
Total Dissolved Solids (mg/L)	(TDS) 600	A	103	103	103	104	104	3	0	0%
Total Hardness as CaCo (mg/L) ²	D3 200	A	67	68	75	75	75	3	0	0%
True Colour (Hazen Un (HU))	i ts 15	A	0.5	0.5	0.5	0.5	0.5	3	0	0%
Turbidity (NTU)	5	А	0.1	0.1	0.8	1.4	1.5	37	0	0%
Uranium (mg/L)	0.017	Н	0.003	0.003	0.003	0.003	0.003	3	0	0%
Zinc (mg/L)	3	А	0.005	0.005	0.005	0.010	0.010	3	0	0%

Source: NSW Health Water Quality Monitoring database

Note 1: The ADWG has a Health limit for chlorine of 5mg/L, with recommendation for a free chlorine residual above 0.2 mg/L in the reticulation


Note 2: ADWG recommend 200 mg/L hardness as CaCO3 as an upper limit to minimise the build-up of scale. A lower limit of 60 mg/L is desirable for avoiding corrosion by soft water.

Appendix B Baradine water quality data


B.1 Water quality graphs

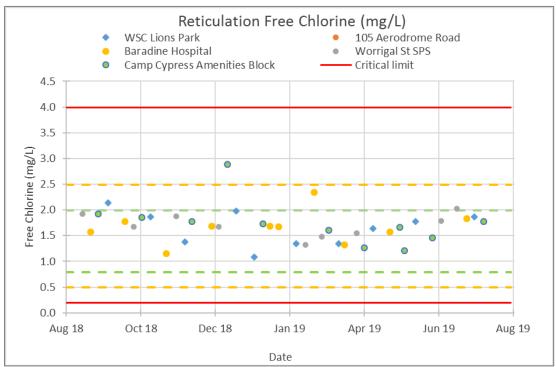

B.1.1 Operational monitoring graphs

Figure B-1. Baradine treated water pH

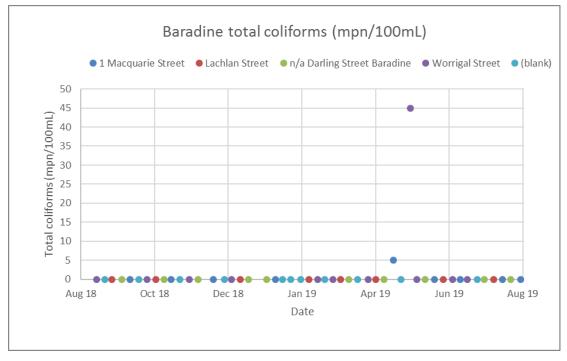


Figure B-3. Baradine reticulation free chlorine

B.1.2 Verification monitoring graphs

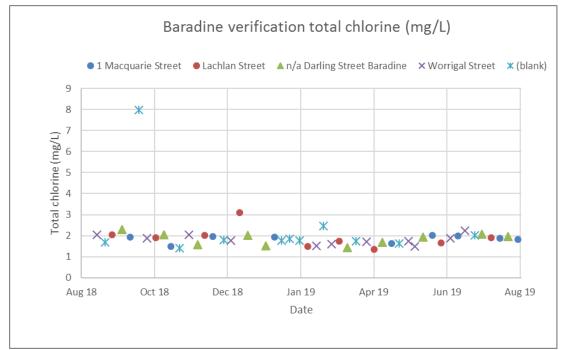


Figure B-5. Baradine verification total chlorine

B.2 Water quality data summary

Source/Sample Point	Parameter	Min	Avg	Max	Lower critical limit	Upper critical limit	No. of sample s	ССР
Raw Water	рН	5.94	6.39	7.03			364	
Aerated Water	рН	7.09	7.89	8.38			364	
Treated water	рН	7.00	7.75	8.35			364	
Treated Water	Free Chlorine (mg/L)	1.09	1.64	2.30	1.00	4.00	364	BDN2
Treated Water	Turbidity (NTU)	0.00	0.20	0.83		0.80	363	BDN1
Reticulation	Free Chlorine (mg/L)	0.90	1.77	2.90	0.20	4.00	20	BDN5
WSC Lions Park	Free Chlorine (mg/L)	1.10	1.65	2.15	0.20	4.00	10	BDN5
WSC Lions Park	Total Chlorine (mg/L)	1.44	1.80	2.29			10	
WSC Lions Park	рН	7.54	7.85	8.03			10	
Baradine Hospital	Free Chlorine (mg/L)	1.16	1.67	2.35	0.20	4.00	10	BDN5
Baradine Hospital	Total Chlorine (mg/L)	1.40	1.85	2.45			10	
Baradine Hospital	pH	7.54	7.90	8.10			10	
Worrigal St SPS	Free Chlorine (mg/L)	1.33	1.71	2.04	0.20	4.00	9	BDN5
Worrigal St SPS	Total Chlorine (mg/L)	1.51	1.86	2.25			9	

 Table B-1. Baradine operational monitoring data summary

Source/Sample Point	Parameter	Min	Avg	Max	Lower critical limit	Upper critical limit	No. of sample s	ССР
Worrigal St SPS	рН	7.51	7.91	8.26			9	
Camp Cypress Amenities Block	Free Chlorine (mg/L)	1.22	1.75	2.90	0.20	4.00	11	BDN5
Camp Cypress Amenities Block	Total Chlorine (mg/L)	1.35	1.90	3.10			11	
Camp Cypress Amenities Block	рН	7.56	7.97	8.35			11	
1 Maccquarie street	Free Chlorine (mg/L)	0.90	1.59	1.82	0.20	4.00	11	BDN5
1 Maccquarie street	Total Chlorine (mg/L)	1.49	1.78	1.95			11	
1 Maccquarie street	рН	7.88	8.00	8.15			11	

Source: Baradine operational monitoring spreadsheet

B.2.1 Verification monitoring

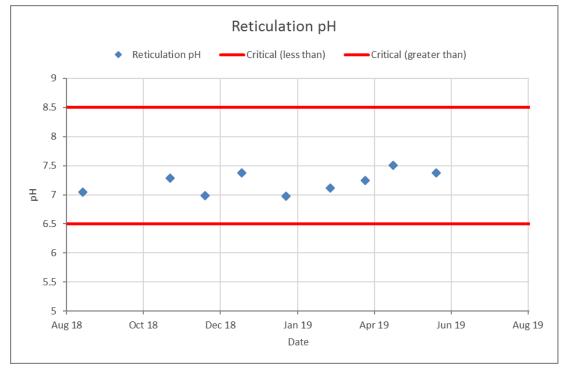
For the new WTP Verification data taken from the NSW Health database, from 1 August 2018 to 31 July 2019 was analysed for the Baradine water system. Any microbiological readings '< 1' were taken as zero, all other less than readings were taken as half of their upper limits, that is '< 0.1' became '0.05'. Values listed as greater than were taken as their lower limit, '> 200' became '200'. A summary of key verification data is shown in Table B-2.

ADWG aesthetic guideline exceedances are highlighted blue and ADWG health exceedances or microbiological detections are highlighted orange.

Characteristic	Guideline		Min	5 th	Median	95 th %il	Max	Samples	Excep	o-tions
	Value (Health			%ile		е				
	or Aesthetic)									
Aluminium (mg/L)	0.2	Α	0.06	0.06	0.09	0.10	0.1	3	0	0%
Antimony (mg/L)	0.003	Н	0.0005	0.0005	0.0005	0.0005	0.0005	3	0	0%
Arsenic (mg/L)	0.01	Н	0.0005	0.0005	0.0005	0.0005	0.0005	3	0	0%
Barium (mg/L)	2	Н	0.10	0.10	0.10	0.11	0.11	3	0	0%
Boron (mg/L)	4	Η	0.05	0.05	0.05	0.05	0.05	3	0	0%
Cadmium (mg/L)	0.002	Η	0.0003	0.0003	0.0003	0.0003	0.0003	3	0	0%
Calcium (mg/L)			7.7	7.8	8.4	9.2	9.3	3	0	0%
Chloride (mg/L)	250	А	34	34	35	36	36	3	0	0%
Chromium (mg/L)	0.05	Н	0.0025	0.0025	0.0025	0.0025	0.0025	3	0	0%
Copper (mg/L)	2	Н	0.0025	0.0025	0.0025	0.025	0.027	3	0	0%
E. coli	0	Н	0	0	0	0	0	49	0	0%
Fluoride (mg/L)	1.5	Н	0.13	0.13	0.14	0.149	0.15	3	0	0%
Free chlorine (mg/L) ¹			0.9	1.2	1.7	2.1	2.9	50	0	0%
lodine (mg/L)			0.02	0.02	0.02	0.03	0.03	3	0	0%
Iron (mg/L)	0.3	А	0.02	0.02	0.05	0.06	0.06	3	0	0%
Lead (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	3	0	0%
Magnesium (mg/L)	-		4.3	4.4	5.1	5.3	5.3	3	0	0%
Manganese (mg/L)	0.5	Н	0.0025	0.0028	0.0050	0.0095	0.0100	3	0	0%
Mercury (mg/L)	0.001	Н	0.0	0.0	0.0	0.0	0.0	3	0	0%

Table B-2. Baradine verification monitoring data summary

Valu	leline e (Health esthetic)	١	Min	5 th %ile	Median	95 th %il e	Max	Samples	Ехсер	o-tions
Molybdenum (mg/L)	0.05	Н	0.0025	0.0025	0.0025	0.0025	0.0025	3	0	0%
Nickel (mg/L)	0.02	Н	0.005	0.005	0.005	0.005	0.005	3	0	0%
Nitrate (mg/L)	50	Н	0.5	0.5	0.5	0.5	0.5	3	0	0%
Nitrite (mg/L)	3	Н	0.05	0.05	0.05	0.05	0.05	3	0	0%
рН	8.5	А	7.0	7.5	8.0	8.3	8.4	53	0	0%
Selenium (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	3	0	0%
Silver (mg/L)	0.1	Н	0.001	0.001	0.001	0.001	0.001	3	0	0%
Sodium (mg/L)	180	А	56	58	72	72	72	3	0	0%
Sulfate (mg/L)	250	А	4	4	4	4	4	3	0	0%
Temperature (oC)			23	23	24	29	32	33	10	10
Total Chlorine (mg/L)	5	Н	1.4	1.5	1.9	2.4	8.0	50	1	2%
Total Coliforms (cfu/100 m	L)		0	0	0	0	45	49	2	4%
Total Dissolved Solids (TDS (mg/L)) 600	A	193	194	202	206	206	3	0	0%
Total Hardness as CaCO3 (mg/L) ²	200	A	37	38	43	44	44.1	3	0	0%
True Colour (Hazen Units (HU))	15	A	0.5	0.5	0.5	1.0	1.0	3	0	0%
Turbidity (NTU)	5	А	0.10	0.23	0.61	1.9	3.6	37	0	0%
Uranium (mg/L)	0.017	Н	0.003	0.003	0.003	0.003	0.003	3	0	0%
Zinc (mg/L)	3	А	0.005	0.005	0.005	0.01	0.01	3	0	0%


Note 1: The ADWG has a Health limit for chlorine of 5mg/L, with recommendation for a free chlorine residual above 0.2 mg/L in the reticulation

Appendix C Kenebri water quality data

C.1 Water quality graphs

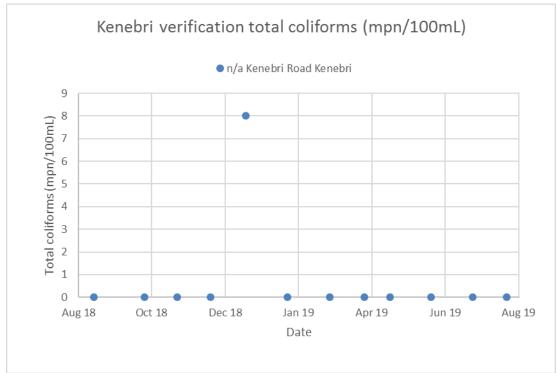

C.1.1 Operational monitoring graphs

Figure C-1. Kenebri reticulation pH

C.1.2 Verification monitoring graphs

C.2 Water quality data summary

Source/Sample Point	Parameter	Min	Avg	Max	Lower critical limit	Upper critical limit	No. of samples	ССР
Reservoir	Free chlorine (mg/L)	1.10	2.28	5.20	1.0	4	16	KBI1
Kenebri (Coonabarabran spreadsheet)	Free chlorine (mg/L)	0.81	1.92	2.60	1.0	4	42	KBI1
Reticulated Water Quality	,							
GM Stubbs	Free Chlorine (mg/L)	0.08	1.29	2.49	0.20	4	5	KBI3
GM Stubbs	Total Chlorine (mg/L)	0.10	1.60	3.15			6	
GM Stubbs	рН	6.95	7.15	7.38			5	
Van't Hag	Free Chlorine (mg/L)	0.00	2.18	5.27	0.20	4	8	KBI3
Van't Hag	Total Chlorine (mg/L)	0.00	2.00	4.65			7	
Van't Hag	рН	6.99	7.21	7.52			8	

Table C-1. Kenebri operational monitoring data summary

Source: Kenebri operational monitoring spreadsheet

C.2.1 Verification monitoring

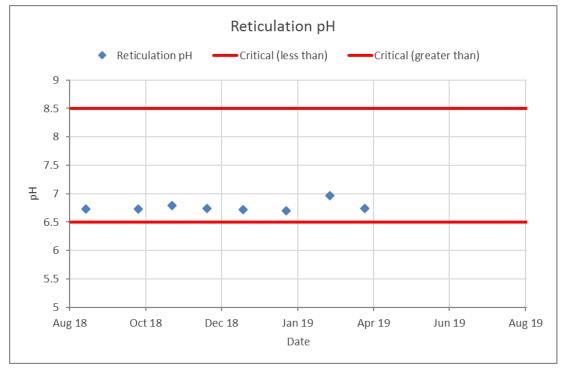
For the new WTP Verification data taken from the NSW Health database, from 1 August 2018 to 31 July 2019 was analysed for the Kenebri water system. Any microbiological readings '< 1' were taken as zero, all other less than readings were taken as half of their upper limits, that is '< 0.1' became '0.05'. Values listed as greater than were taken as their lower limit, '> 200' became '200'. A summary of key verification data is shown in Table C-2.

ADWG aesthetic guideline exceedances are highlighted blue and ADWG health exceedances or microbiological detections are highlighted orange.

Characteristic	Guideline Value (Health or Aesthetic)	1	Min	5 th %ile	Median	95 th %il e	Max	Samples	Excep	-tions
Aluminium (mg/L)	0.2	А	0.01	0.01	0.01	0.02	0.02	2	0	0%
Antimony (mg/L)	0.003	Н	0.0005	0.0005	0.0005	0.0005	0.0005	2	0	0%
Arsenic (mg/L)	0.01	Н	0.00	0.00	0.00	0.00	0.00	2	0	0%
Barium (mg/L)	2	Н	0.2	0.2	0.2	0.3	0.3	2	0	0%
Boron (mg/L)	4	Н	0.1	0.1	0.1	0.1	0.1	2	0	0%
Cadmium (mg/L)	0.002	Н	0	0	0	0	0	2	0	0%
Calcium (mg/L)	-		15	15	18	20	21	2	0	0%
Chloride (mg/L)	250	А	180	180	182	183	183	2	0	0%
Chromium (mg/L)	0.05	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Copper (mg/L)	2	Н	0.003	0.003	0.007	0.012	0.012	2	0	0%
E. coli	0	Н	0.00	0.00	0.00	0.00	0.00	12	0	0%
Fluoride (mg/L)	1.5	Н	0.2	0.2	0.2	0.2	0.2	2	0	0%
Free chlorine (mg/L) ¹			0.1	0.2	1.4	2.9	3.2	11	1	9%
Iodine (mg/L)			0.1	0.1	0.1	0.1	0.2	2	0	0%
Iron (mg/L)	0.3	А	0.04	0.04	0.05	0.05	0.05	2	0	0%
Lead (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%

Table C-2. Kenebri verification monitoring data summary

V 0	uideline alue (Health r Aesthetic)	1	Min	5 th %ile	Median	95 th %il e	Max	Samples I	Excep	-tions
Magnesium (mg/L)	-		7.2	7.3	8.4	9.5	9.6	2	0	0%
Manganese (mg/L)	0.5	Н	0.0	0.0	0.0	0.0	0.0	2	0	0%
Mercury (mg/L)	0.001	Н	0.000	0.000	0.000	0.000	0.000	2	0	0%
Molybdenum (mg/L)	0.05	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Nickel (mg/L)	0.02	Н	0.01	0.01	0.01	0.01	0.01	2	0	0%
Nitrate (mg/L)	50	Н	1.0	1.1	1.5	2.0	2.0	2	0	0%
Nitrite (mg/L)	3	Н	0.1	0.1	0.1	0.1	0.1	2	0	0%
рН	8.5	А	7.0	7.0	7.3	7.6	7.7	13	0	0%
Selenium (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Silver (mg/L)	0.1	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Sodium (mg/L)	180	А	121	123	138	152	154	2	0	0%
Sulfate (mg/L)	250	А	11	11	11	11	11	2	0	0%
Temperature (oC)			30	30	30	31	32	32	2	0
Total Chlorine (mg/L)	5	Н	0.1	0.2	1.9	3.3	3.4	11	0	0%
Total Coliforms (cfu/100) mL)		0.0	0.0	0.0	3.6	8.0	12	1	8%
Total Dissolved Solids (T (mg/L)	DS) 600	A	474	476	492	508	510	2	0	0%
Total Hardness as CaCO3 (mg/L) ²	3 200	A	78	78	79	81	81	2	0	0%
True Colour (Hazen Unit (HU))	s 15	A	0.5	0.5	0.8	1.0	1.0	2	0	0%
Turbidity (NTU)	5	А	0.1	0.2	0.8	1.0	1.0	9	0	0%
Uranium (mg/L)	0.017	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Zinc (mg/L)	3	А	0.01	0.01	0.03	0.04	0.04	2	0	0%


Note 1: The ADWG has a Health limit for chlorine of 5mg/L, with recommendation for a free chlorine residual above 0.2 mg/L in the reticulation

Appendix D Bugaldie water quality data

D.1 Water quality graphs

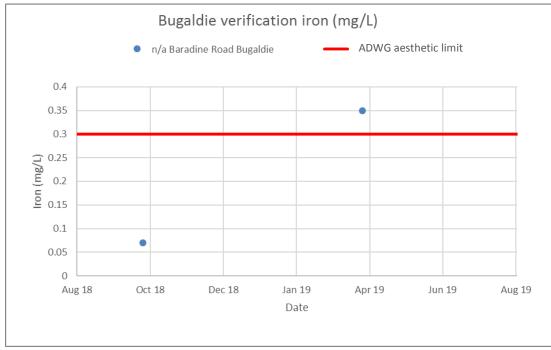

D.1.1 Operational monitoring graphs

Figure D-1. Bugaldie reticulation pH

D.1.2 Verification monitoring graphs

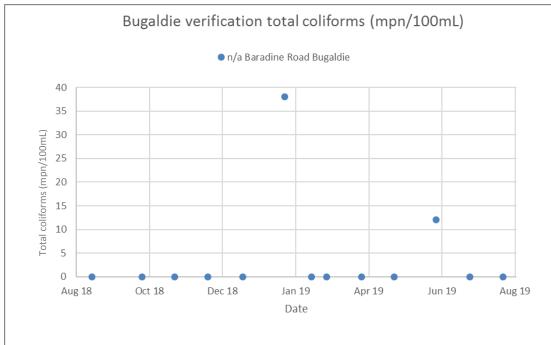


Figure D-3. Bugaldie verification total coliforms

D.2 Water quality data summary

Source/Sample Point	Parameter	Min	Avg	Max	Lower critical limit	Upper critical limit	No. of samples	ССР
Reservoir	Free chlorine (mg/L)	1.10	2.28	5.20	1.0	4	16	KBI1
Bugaldie (Coonabarabran spreadsheet)	Free chlorine (mg/L)	0.65	2.06	3.30	1.0	4	41	BUG1
Reticulated Water Quality								
GM Stubbs	Free Chlorine (mg/L)	0.08	1.29	2.49	0.2	4	5	KBI 3
GM Stubbs	Total Chlorine (mg/L)	0.10	1.60	3.15			6	
GM Stubbs	рН	6.95	7.15	7.38			5	
Van't Hag	Free Chlorine (mg/L)	0.00	2.18	5.27	0.2	4	8	KBI 3
Van't Hag	Total Chlorine (mg/L)	0.00	2.00	4.65			7	
Van't Hag	рН	6.99	7.21	7.52			8	

Table D-1. Bugaldie operational monitoring data summary

Source: Bugaldie operational monitoring spreadsheet

D.2.1 Verification monitoring

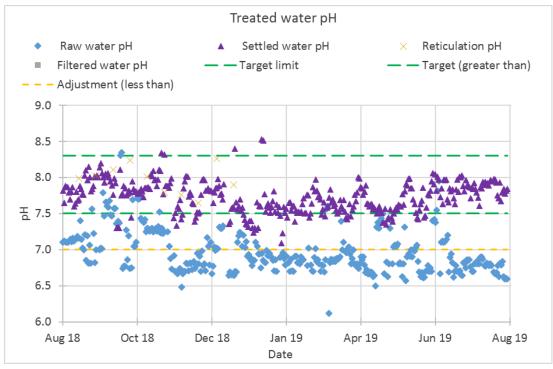
For the new WTP Verification data taken from the NSW Health database, from 1 August 2018 to 31 July 2019 was analysed for the Bugaldie water system. Any microbiological readings '< 1' were taken as zero, all other less than readings were taken as half of their upper limits, that is '< 0.1' became '0.05'. Values listed as greater than were taken as their lower limit, '> 200' became '200'. A summary of key verification data is shown in Table D-2.

ADWG aesthetic guideline exceedances are highlighted blue and ADWG health exceedances or microbiological detections are highlighted orange.

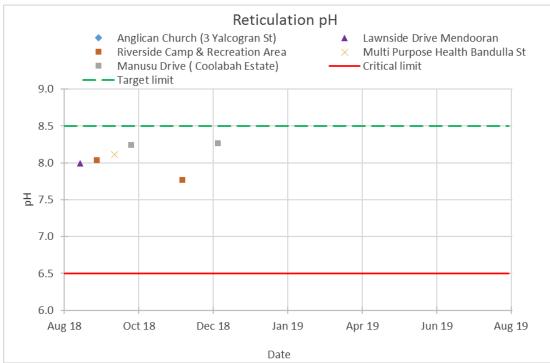
	Guideline		Min	5 th	Media	95 th %il	Max	Samples I	Exce	o-tions
	Value (Health			%ile	n	е				
Aluminium (mg/L)	or Aesthetic) 0.2	А	0.01	0.01	0.02	0.03	0.03	2	0	0%
Antimony (mg/L)	0.003	н	0.001	0.0005	0.002	0.0005	0.0005	2	0	0%
Arsenic (mg/L)	0.003	Н	0.0005	0.0005	0.0005	0.0005	0.0005	2	0	0%
Barium (mg/L)	2	Н	0.000	0.0005	0.0005	0.0005	0.0005	2	0	0%
Boron (mg/L)	4	H	0.05	0.05	0.10	0.10	0.10	2	0	0%
Cadmium (mg/L)	0.002	 Н	0.0003	0.0003	0.0003	0.0003	0.0003	2	0	0%
Calcium (mg/L)			15	15	16	16	17	2	0	0%
Chloride (mg/L)	250	A	43	43	45	46	46	2	0	0%
Chromium (mg/L)	0.05	н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Copper (mg/L)	2	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
E. coli	0	Н	0.01	0.01	0.02	0.02	0.02	13	0	0%
Fluoride (mg/L)	1.5	H	0.27	0.27	0.28	0.28	0.28	2	0	0%
Free chlorine (mg/L)	1.5	п	1.4	1.5	2.3	4.1	4.2	12	0	0%
Iodine (mg/L)			0.02	0.02	0.03	0.03	0.03	2	0	0%
Iron (mg/L)	0.3	А	0.02	0.02	0.03	0.03	0.35	2	1	50%
Lead (mg/L)	0.01	H H	0.001	0.001	0.21	0.003	0.003	2	1 0	0%
Magnesium (mg/L)			12	12	13	14	14	2	0	0%
Manganese (mg/L)	0.5	н	0.003	0.003	0.003	0.003	0.003	2	0	0%
								2		0%
Mercury (mg/L)	0.001	H	0.0001	0.0001	0.0001	0.0001	0.0001		0	
Molybdenum (mg/L)	0.05	H	0.003	0.003	0.003	0.003	0.003	2	-	0%
Nickel (mg/L)	0.02	Н	0.005	0.005	0.005	0.005	0.005	2	0	0%
Nitrate (mg/L)	50	н	1.00	1.05	1.50	1.95	2.00	2	0	0%
Nitrite (mg/L)	3	H	0.05	0.05	0.05	0.05	0.05	2	0	0%
pH	8.5	A	6.6	6.6	6.7	7.2	7.5	15	0	0%
Selenium (mg/L)	0.01	н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Silver (mg/L)	0.1	H	0.001	0.001	0.001	0.001	0.001	2	0	0%
Sodium (mg/L)	180	A	31	32	37	41	42	2	0	0%
Sulfate (mg/L)	250	A	2	2	2	2	2	2	0	0%
Temperature (oC)			23	23	23	25	31	32	4	0
Total Chlorine (mg/L)		Н	1.7	1.9	2.7	4.8	4.8	12	0	0%
Total Coliforms (cfu/10	•		0	0	0	22	38	13	2	15%
Total Dissolved Solids (mg/L)	· ·	A	178	179	184	188	189	2	0	0%
Total Hardness as CaC	D3 200	A	85	86	92	98	98.6	2	0	0%

Table D-2. Bugaldie verification monitoring data summary

Characteristic	Guideline Value (Health or Aesthetic)	Value (Health		5 th %ile	Media n	95 th %il e	Max	x Samples Exce		o-tions
(mg/L) ²										
True Colour (Hazen U (HU))	inits 15	A	0.5	0.5	0.8	1.0	1.0	2	0	0%
Turbidity (NTU)	5	А	0.3	0.5	1.1	6.0	6.4	9	2	22%
Uranium (mg/L)	0.017	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Zinc (mg/L)	3	А	0.08	0.08	0.08	0.08	0.08	2	0	0%

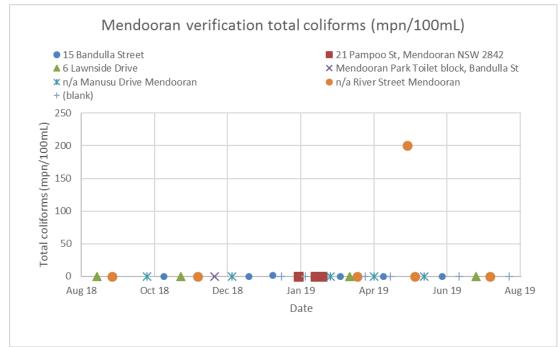

Note 1: The ADWG has a Health limit for chlorine of 5mg/L, with recommendation for a free chlorine residual above 0.2 mg/L in the reticulation

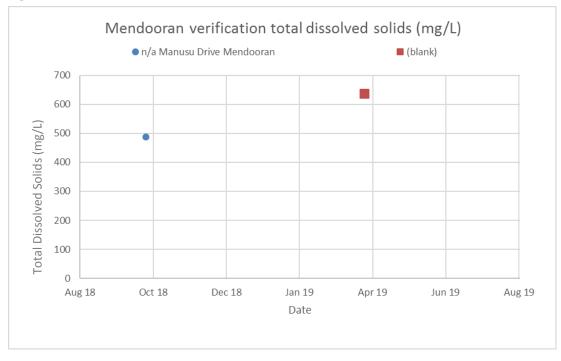
Appendix E Mendooran water quality data


E.1 Water quality graphs

E.1.1 Operational monitoring graphs

Figure E-1. Mendooran operational pH





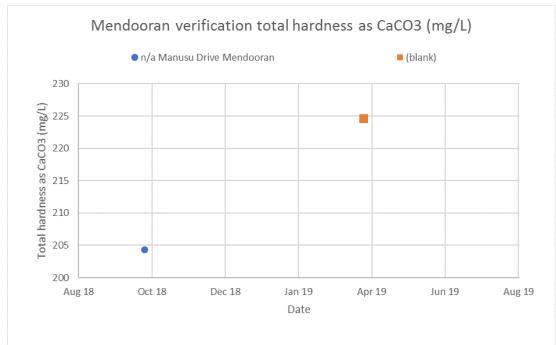

E.1.2 Verification monitoring graphs

Figure E-3. Mendooran verification total coliforms

Figure E-4. Mendooran verification TDS

Figure E-5. Mendooran verification hardness

E.2 Water quality data summary

Source/Sample Point	Parameter	Min	Avg	Max	Lower critical limit	Upper critical limit	No. of samples	ССР
Raw Water Quality								
Raw water	рН	6.12	6.97	8.35			347	
Raw water	Turbidity (NTU)	0.16	7.13	61.5			346	
Raw water	Manganese (mg/L)	0.30	0.64	1.39			15	
Raw water	Iron (mg/L)	0.03	0.56	2.08			15	
Chemical dosing rates								
Pre dose	PAC-AC (mg/L)	15.00	25.01	45.0			354	
Settled water	рН	7.09	7.73	8.53			360	
Filtered water, online	Turbidity (NTU)	0.03	0.15	0.42		0.5	348	MDN1
Clear Water Quality								
Clear water - manual	рН	6.98	7.89	8.28	6.5	4.0	360	
Clear water - manual	Chlorine (mg/L)	0.03	2.62	4.01	1.0	4.0	363	MDN2
Clear water - manual	Manganese (mg/L)	0.01	0.04	0.13			7	
Clear water - manual	Iron (mg/L)	0.00	0.02	0.12			7	
Reticulation Water Quality								
Lawnside Drive Mendooran	Free Chlorine (mg/L)	2.06	2.06	2.06	0.2	4.0	1	MDN4
Lawnside Drive Mendooran	Total Chlorine (mg/L)	2.36	2.36	2.36			1	
Lawnside Drive Mendooran	рН	7.99	7.99	7.99			1	
Riverside Camp & Recreation Area	Free Chlorine (mg/L)	2.89	3.44	3.99	0.2	4.0	2	MDN4

 Table E-1. Mendooran operational monitoring data summary

Source/Sample Point	Parameter	Min	Avg	Max	Lower critical limit	Upper critical limit	No. of samples	ССР
Riverside Camp &	Total Chlorine	3.54	4.14	4.73			2	
Recreation Area	(mg/L)							
Riverside Camp & Recreation Area	рН	7.76	7.90	8.03			2	
Multi Purpose Health	Free Chlorine	2.41	2.41	2.41	0.2	4.0	1	MDN4
Bandulla St	(mg/L)				0.1		-	
Multi Purpose Health	Total Chlorine	2.79	2.79	2.79			1	
Bandulla St	(mg/L)							
Multi Purpose Health Bandulla St	рН	8.11	8.11	8.11			1	
Manusu Drive (Coolabah	Free Chlorine	1.80	1.83	1.86	0.2	4.0	2	MDN4
Estate)	(mg/L)							
Manusu Drive (Coolabah	Total Chlorine	1.97	2.01	2.05			2	
Estate)	(mg/L)							
Manusu Drive (Coolabah Estate)	рН	8.24	8.25	8.26			2	
Back Tank Manusu Free	Free Chlorine	0.17	1.28	2.40	0.2	4.0	148	MDN4
Chlorine	(mg/L)							
Back Tank Manusu pH	рН	6.78	8.22	8.44				
Lawnside drive Free Chlorine	Free Chlorine (mg/L)	0.16	1.47	3.05	0.2	4.0	92	MDN4
Lawnside drive Turbidity	Turbidity (NTU)	0.13	0.37	2.86	1.0	4.0	84	
Sport Ground Free Chlorine	Free Chlorine (mg/L)	0.25	1.30	2.19	0.2	4.0	16	MDN4
Sport Ground Turbidity	Turbidity (NTU)	0.16	0.98	9.80	1.0	4.0	16	
Royal Hotel (15 Bandulla Street)	Free Chlorine (mg/L)	1.20	1.20	1.20	0.2	4.0	1	MDN4
Royal Hotel (15 Bandulla Street)	Total Chlorine (mg/L)	1.36	1.36	1.36			1	
Royal Hotel (15 Bandulla Street)	рН	8.01	8.01	8.01			1	

Source: Mendooran operational monitoring spreadsheet

E.2.1 Verification monitoring

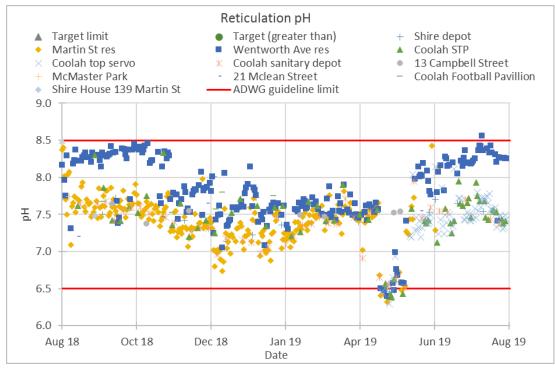
For the new WTP Verification data taken from the NSW Health database, from 1 August 2018 to 31 July 2019 was analysed for the Mendooran water system. Any microbiological readings '< 1' were taken as zero, all other less than readings were taken as half of their upper limits, that is '< 0.1' became '0.05'. Values listed as greater than were taken as their lower limit, '> 200' became '200'. A summary of key verification data is shown in Table E-2.

ADWG aesthetic guideline exceedances are highlighted blue and ADWG health exceedances or microbiological detections are highlighted orange.

Characteristic	Guideline Value (Health or Aesthetic)	I	Min	5 th %ile	Media n	95 th %il e	Max	Samples	Excep	o-tions
Aluminium (mg/L)	0.2	А	0.01	0.011	0.02	0.029	0.03	2	0	0%
Antimony (mg/L)	0.003	Н	0.0005	0.0005	0.0005	0.0005	0.0005	2	0	0%
Arsenic (mg/L)	0.01	Н	0.00	0.00	0.00	0.00	0.00	2	0	0%

 Table E-2. Mendooran verification monitoring data summary

Characteristic	Guideline		Min	5 th	Media	95 th %il	Max	Samples	Exce	p-tions
	Value (Health)		%ile	n	е				
	or Aesthetic)		0.10							a a (
Barium (mg/L)	2	Н	0.10	0.11	0.15	0.19	0.20	2	0	0%
Boron (mg/L)	4	Н	0.05	0.05	0.05	0.05	0.05	2	0	0%
Cadmium (mg/L)	0.002	Н	0	0	0	0	0	2	0	0%
Calcium (mg/L)	-		37	37	40	43	44	2	0	0%
Chloride (mg/L)	250	Α	197	199	219	239	241	2	0	0%
Chromium (mg/L)	0.05	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Copper (mg/L)	2	Н	0.005	0.006	0.015	0.024	0.025	2	0	0%
E. coli	0	Н	0.00	0.00	0.00	0.00	0.00	31	0	0%
Fluoride (mg/L)	1.5	Н	0.1	0.1	0.1	0.1	0.1	2	0	0%
Free chlorine (mg/L) ¹			0.4	0.6	1.8	3.5	4.0	31	0	0%
Iodine (mg/L)			0.0	0.0	0.0	0.0	0.0	2	0	0%
Iron (mg/L)	0.3	А	0.01	0.01	0.01	0.02	0.02	2	0	0%
Lead (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Magnesium (mg/L)	-		27.2	27.3	27.7	28.1	28.1	2	0	0%
Manganese (mg/L)	0.5	Н	0.003	0.003	0.004	0.006	0.006	2	0	0%
Mercury (mg/L)	0.001	Н	0.0001	0.0001	0.0001	0.0001	0.0001	2	0	0%
Molybdenum (mg/L)	0.05	Н	0.0025	0.0025	0.0025	0.0025	0.0025	2	0	0%
Nickel (mg/L)	0.02	Н	0.01	0.01	0.01	0.01	0.01	2	0	0%
Nitrate (mg/L)	50	Н	0.5	0.5	0.8	1.0	1.0	2	0	0%
Nitrite (mg/L)	3	Н	0.1	0.1	0.1	0.1	0.1	2	0	0%
рН	8.5	А	6.7	7.4	7.8	8.2	8.3	32	0	0%
Selenium (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Silver (mg/L)	0.1	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Sodium (mg/L)	180	А	118	119	123	128	128	2	0	0%
Sulfate (mg/L)	250	А	11	12	19	25	26	2	0	0%
Temperature (oC)			20	20	21	27	32	34	10	0%
Total Chlorine (mg/L)	5	Н	0.4	0.7	2.0	4.5	4.7	31	0	0%
Total Coliforms (cfu/1	00 mL)		0.0	0.0	0.0	1.0	200.0	31	2	6%
Total Dissolved Solids (mg/L)	(TDS) 600	A	487	495	562	630	637	2	1	50%
Total Hardness as CaC (mg/L) ²	03 200	A	204	205	214	224	225	2	2	100 %
True Colour (Hazen Ur (HU))		A	0.5	0.5	0.5	0.5	0.5	2	0	0%
Turbidity (NTU)	5	А	0.22	0.3	0.6	3.6	8.4	26	1	4%
Uranium (mg/L)	0.017	Н	0.0025	0.0025	0.0025	0.0025	0.0025	2	0	0%
Zinc (mg/L)	3	Α	0.0100	0.0105	0.0150	0.0195	0.0200	2	0	0%


Note 1: The ADWG has a Health limit for chlorine of 5mg/L, with recommendation for a free chlorine residual above 0.2 mg/L in the reticulation

Appendix F Coolah water quality data

F.1 Water quality graphs

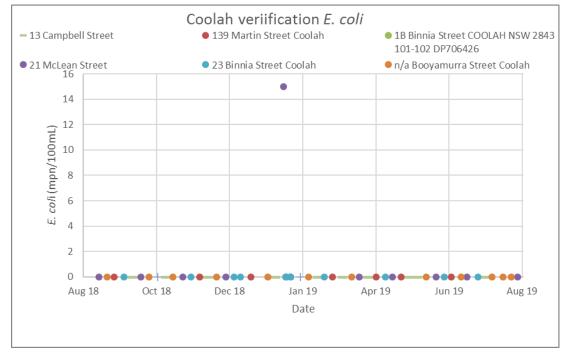

F.1.1 Operational monitoring graphs

Figure F-1. Coolah reticulation pH

F.1.2 Verification monitoring graphs

Figure F-2. Coolah verification E. coli

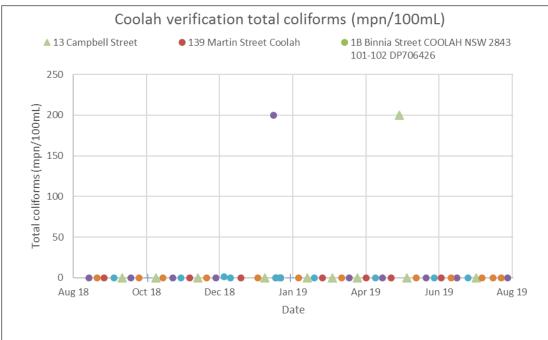
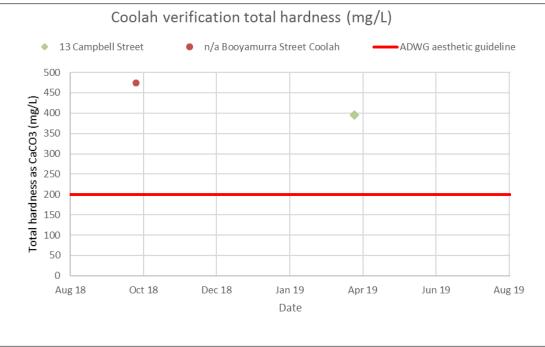



Figure F-3. Coolah verification total coliforms

F.2 Water quality data summary

Table F-1. Coolah operational monitoring data summary

Source/Sample Point	Parameter	Min	Avg	Max	Lower critical limit	Upper critical limit	No. of samples	ССР
Reservoir Water Quality								
Coolah top servo	Free chlorine	0.98	1.56	2.02	0.4	4.0	82	CLH1
Coolah top servo	рН	6.30	7.38	8.14	6.5	8.5	79	

Source/Sample Point	Parameter	Min	Avg	Max	Lower critical limit	Upper critical limit	No. of samples	ССР
Coolah top servo	NTU	0.81	0.91	1.01			2	
Reticualed Water Quality								
Martin St res	Free chlorine (mg/L)	0.20	1.48	4.00	0.4	4.0	274	CLH4
Martin St res	рН	6.32	7.40	8.43	6.5	8.5	276	
Wentworth Ave res	Free chlorine (mg/L)	0.08	1.32	2.20	0.4	4.0	235	CLH4
Wentworth Ave res	Turbidity (NTU)	0.26	0.85	1.99		5.0	9	
Shire depot	Free chlorine (mg/L)	0.59	1.51	2.80	0.2	4.0	22	CLH4
Shire depot	рН	-	-	-			-	
Coolah STP	Free chlorine (mg/L)	0.81	1.42	2.05	0.2	4.0	65	CLH4
Coolah STP	рН	6.38	7.46	8.33	6.5	8.5	63	
Coolah sanitary depot	Free chlorine (mg/L)	0.50	1.33	2.24	0.2	4.0	43	CLH4
Coolah sanitary depot	рН	6.52	7.33	7.95	6.5	8.5	43	
13 Campbell Street	Free Chlorine (mg/L)	1.31	1.77	2.17	0.2	4.0	6	CLH4
13 Campbell Street	Total Chlorine (mg/L)	0.06	1.72	2.59			7	
13 Campbell Street	рН	7.37	7.51	7.64			7	
McMaster Park	Free Chlorine (mg/L)	0.98	1.93	2.53	0.2	4.0	11	CLH4
McMaster Park	Total Chlorine (mg/L)	1.10	2.09	2.63			11	
McMaster Park	рН	7.56	7.63	7.74			3	
21 Mclean Street	Free Chlorine (mg/L)	0.98	1.85	2.35	0.2	4.0	8	CLH4
21 Mclean Street	Total Chlorine (mg/L)	1.14	2.07	2.59			8	
21 Mclean Street	рН	7.20	7.47	7.65			8	
Coolah Football Pavillion	Free Chlorine (mg/L)	1.28	1.63	2.10	0.2	4.0	6	CLH4
Coolah Football Pavillion	Total Chlorine (mg/L)	1.31	1.84	2.40			6	
Coolah Football Pavillion	рН	7.50	7.64	7.80			6	
Shire House 139 Martin St	Free Chlorine (mg/L)	1.70	1.70	1.70	0.2	4.0	1	CLH4
Shire House 139 Martin St	Total Chlorine (mg/L)	1.89	1.89	1.89			1	
Shire House 139 Martin St	рН	7.48	7.48	7.48			1	
Sewer treatment plant	Free Chlorine (mg/L)	-		-			-	
Sewer treatment plant	Total Chlorine (mg/L)	-		-			-	
Sewer treatment plant	рН	-		-			-	
Hospital	Free Chlorine (mg/L)	-		-			-	
Hospital	Total Chlorine (mg/L)	0.00	0.00	0.00			0	
Hospital	рН	0.00	0.00	0.00			0	
Coolah Football Pavillion	Total Chlorine (mg/L)	7.37	7.37	7.37			12	
Coolah Football Pavillion	NTU	0.00	0.00	0.00			0	

Source: Coolah operational monitoring spreadsheet

F.2.1 Verification monitoring

For the new WTP Verification data taken from the NSW Health database, from 1 August 2018 to 31 July 2019 was analysed for the Coolah water system. Any microbiological readings '< 1' were taken as zero, all other less than readings were taken as half of their upper limits, that is '< 0.1' became

'0.05'. Values listed as greater than were taken as their lower limit, '> 200' became '200'. A summary of key verification data is shown in Table F-2.

ADWG aesthetic guideline exceedances are highlighted blue and ADWG health exceedances or microbiological detections are highlighted orange.

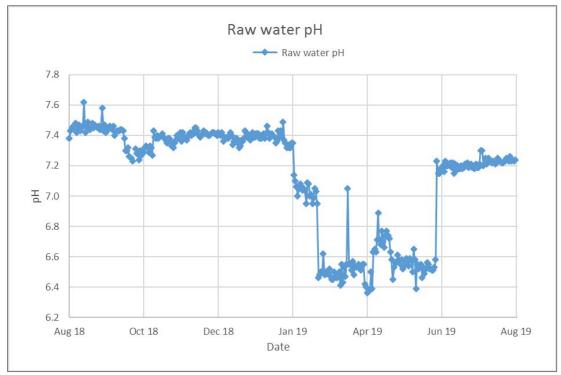
Characteristic	Guideline		Min	5 th %ile	Media	95 th %il	Max	Samples	F	хсер-
	Value (Health			J /one	n	e	ITICA	Sumples		tions
	or Aesthetic)									
Aluminium (mg/L)	0.2	А	0.005	0.005	0.005	0.005	0.005	2	0	0%
Antimony (mg/L)	0.003	Н	0.0005	0.0005	0.0005	0.0005	0.0005	2	0	0%
Arsenic (mg/L)	0.01	Η	0.001	0.001	0.001	0.001	0.001	2	0	0%
Barium (mg/L)	2	Н	0.02	0.02	0.02	0.02	0.02	2	0	0%
Boron (mg/L)	4	Η	0.05	0.05	0.05	0.05	0.05	2	0	0%
Cadmium (mg/L)	0.002	Н	0.0003	0.0003	0.0003	0.0003	0.0003	2	0	0%
Calcium (mg/L)	-		67	68	72	76	76	2	0	0%
Chloride (mg/L)	250	А	58	58	58	58	58	2	0	0%
Chromium (mg/L)	0.05	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Copper (mg/L)	2	Н	0.07	0.07	0.08	0.09	0.09	2	0	0%
E. coli	0	Н	0	0	0	0	15	56	1	2%
Fluoride (mg/L)	1.5	Н	0.05	0.05	0.05	0.05	0.05	2	0	0%
Free chlorine (mg/L) ¹			0.0	1.0	2.0	2.6	3.0	56	2	4%
lodine (mg/L)			0.01	0.01	0.01	0.01	0.01	2	0	0%
Iron (mg/L)	0.3	А	0.005	0.005	0.005	0.005	0.005	2	0	0%
Lead (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Magnesium (mg/L)	-		55	56	62	68	69	2	0	0%
Manganese (mg/L)	0.5	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Mercury (mg/L)	0.001	Н	0.0001	0.0001	0.0001	0.0001	0.0001	2	0	0%
Molybdenum (mg/L)	0.05	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Nickel (mg/L)	0.02	Н	0.005	0.005	0.005	0.0050	0.005	2	0	0%
Nitrate (mg/L)	50	н	5	5	5	0	5	2	0	0%
Nitrite (mg/L)	30	н	0.05	0.05	0.05	0.05	0.05	2	0	0%
	8.5	п А	7.2	7.4	7.5	7.8	8.1	58	0	0%
pH Selenium (mg/L)	0.01	H	0.001	0.001	0.001	0.001	0.001	2	0	0%
Silver (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Sodium (mg/L)	180	п А	30	31	35	40	40	2	0	0%
Sulfate (mg/L)	250	A	5	5	5	40 5	40	2	0	0%
Temperature (oC)	230	А	20	20	21	28	33	34		0%
Total Chlorine (mg/L)	5	н	0.1	1.1	21	2.9	3.2	56	0	0%
Total Coliforms (cfu/1		п	0.1	0	0	2.9	200	56	3	0% 5%
Total Dissolved Solids	-	А	464	466	480	494	496	2	0	0%
(mg/L)	(103) 000	А	404	400	400	494	490	۷	U	070
Total Hardness as CaC	200	Α	395	399	435	470	474	2	2	100%
(mg/L) ² True Colour (Hazen Un (HU))	nits 15	Α	0.5	0.5	0.5	0.5	0.5	2	0	0%
Turbidity (NTU)	5	А	0.1	0.2	0.6	1.9	3.0	40	0	0%

Table F-2. Coolah verification monitoring data summary

Characteristic	Guideline Value (Health or Aesthetic)		Min	5 th %ile	Media n	95 th %il e	Max	Samples		cep- tions
Uranium (mg/L)	0.017	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Zinc (mg/L)	3	A	0.03	0.03	0.04	0.04	0.04	2	0	0%

Note 1: The ADWG has a Health limit for chlorine of 5mg/L, with recommendation for a free chlorine residual above 0.2 mg/L in the reticulation

Appendix G Binnaway water quality data


Water quality graphs

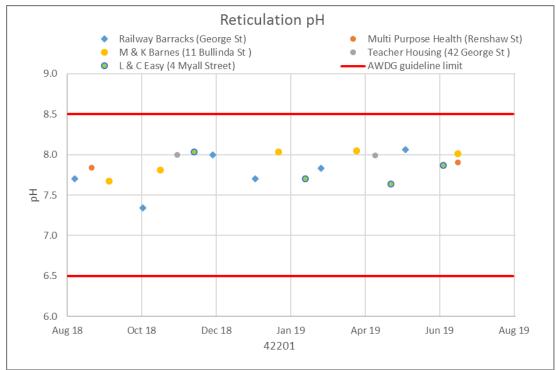
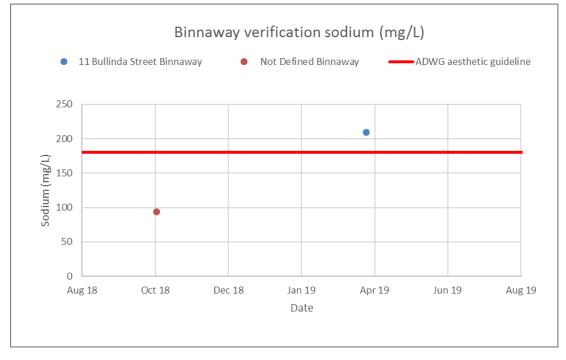

G.1.1 Operational monitoring graphs

Figure G-1. Binnaway treated water colour



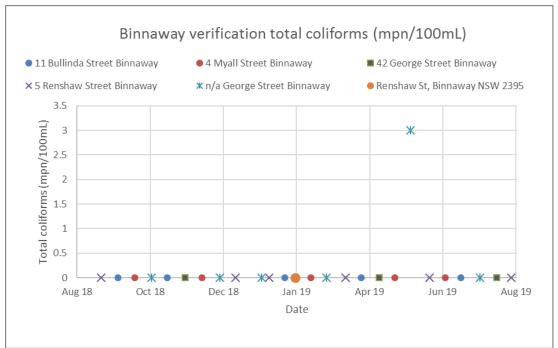
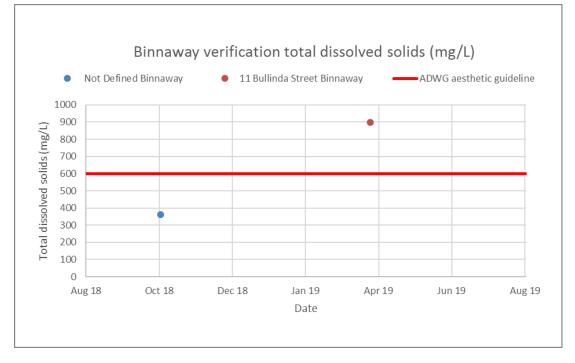


Figure G-3. Binnaway reticulation pH

G.1.2 Verification monitoring graphs



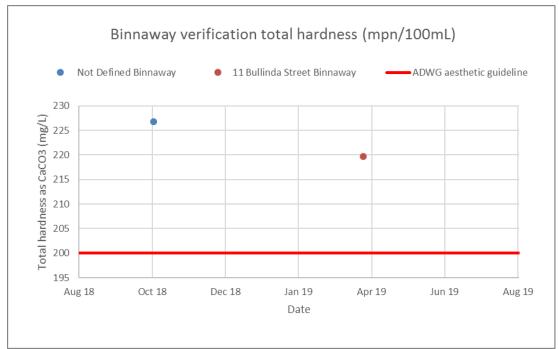


Figure G-5. Binnaway verification total coliforms

Figure G-7. Binnaway verification total hardness

G.2 Water quality data summary

Table G-1. Binnaway operational monitoring data summary

Process	Parameter	Min	Avg	Max	Lower critical limit	Upper critical limit	No. of sampl es	ССР
Raw Water Quality								
Raw water	Turbidity (NTU)	0.43	2.65	84.6			392	
Raw water	Colour (HU)	7.50	19.2 6	120. 0			390	
Raw water	рН	6.36	7.13	7.62			394	
Settled Water Quality								
Settled water	Turbidity (NTU)	0.13	1.47	16.5			394	
Settled water	Colour (HU)	5.00	10.2 2	80.0			394	
Settled water	рН	6.50	6.90	7.42			395	
Filtered Water Quality								
Filtered water	Turbidity (NTU)	0.02	0.20	0.85			395	
Filtered water	Colour (HU)	0.00	0.00	0.00			395	
Filtered water	рН	6.46	6.87	7.20			395	
Clear Water Quality								
Clear water	Colour (HU)	0.00	0.00	0.00			395	
Clear water	рН	6.93	7.58	8.27			395	
Clear water	Turbidity (NTU)	0.11	0.28	0.67		0.5	395	BWY1
Clear water	Free Chlorine (mg/L)	1.70	2.38	3.20	1.0	4.0	395	BWY2
Reticulation								
Railway Barracks (George St)	Free Chlorine	0.51	1.06	1.79	0.2	4.0	7	BWY5

Process	Parameter	Min	Avg	Max	Lower critical limit	Upper critical limit	No. of sampl es	ССР
	(mg/L)							
Railway Barracks (George St)	Total Chlorine (mg/L)	0.81	1.29	1.87			7	
Railway Barracks (George St)	рН	7.34	7.77	8.06	6.5	8.5	7	
Multi Purpose Health (Renshaw St)	Free Chlorine (mg/L)	0.58	1.10	1.85			5	BWY5
Multi Purpose Health (Renshaw St)	Total Chlorine (mg/L)	0.79	1.50	2.22			5	
Multi Purpose Health (Renshaw St)	рН	7.84	7.87	7.90			2	
M & K Barnes (11 Bullinda St)	Free Chlorine (mg/L)	0.45	1.37	2.14			6	BWY5
M & K Barnes (11 Bullinda St)	Total Chlorine (mg/L)	0.67	1.67	2.48			6	
M & K Barnes (11 Bullinda St)	рН	7.67	7.89	8.05			6	
Teacher Housing (42 George St)	Free Chlorine (mg/L)	0.64	1.03	1.41			2	BWY5
Teacher Housing (42 George St)	Total Chlorine (mg/L)	0.73	1.21	1.69			2	
Teacher Housing (42 George St)	рН	7.99	8.00	8.00			2	
L & C Easy (4 Myall Street)	Free Chlorine (mg/L)	0.25	0.72	1.03			4	BWY5
L & C Easy (4 Myall Street)	Total Chlorine (mg/L)	0.45	0.92	1.49			4	
L & C Easy (4 Myall Street)	рН	7.64	7.81	8.03			4	

Source: Binnaway operational monitoring spreadsheet

G.2.1 Verification monitoring

For the new WTP Verification data taken from the NSW Health database, from 1 August 2018 to 31 July 2019 was analysed for the Binnaway water system. Any microbiological readings '< 1' were taken as zero, all other less than readings were taken as half of their upper limits, that is '< 0.1' became '0.05'. Values listed as greater than were taken as their lower limit, '> 200' became '200'. A summary of key verification data is shown in Table G-2.

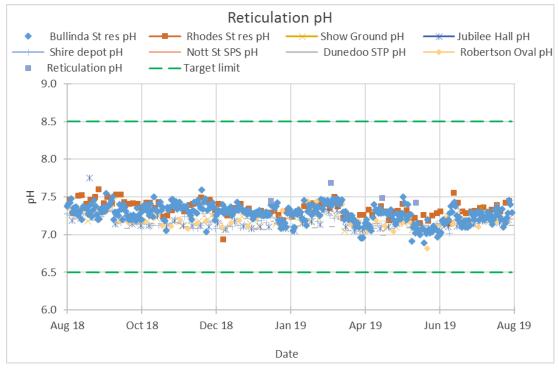
ADWG aesthetic guideline exceedances are highlighted blue and ADWG health exceedances or microbiological detections are highlighted orange.

Table G-2. Binnawa	y verification	mo	nitoring	data sum	mary					
Characteristic	Guideline Value (Health or Aesthetic)		Min	5 th %ile	Media n	95 th %il e	Max	Samples		xcep- tions
Aluminium (mg/L)	0.2	Α	0.005	0.005	0.008	0.010	0.010	2	0	0%
Antimony (mg/L)	0.003	Н	0.0005	0.0005	0.0005	0.0005	0.0005	2	0	0%
Arsenic (mg/L)	0.01	Н	0.0005	0.0005	0.0008	0.0010	0.0010	2	0	0%
Barium (mg/L)	2	Н	0.1	0.1	0.2	0.3	0.3	2	0	0%
Boron (mg/L)	4	Н	0.05	0.05	0.08	0.10	0.10	2	0	0%
Cadmium (mg/L)	0.002	Н	0.0003	0.0003	0.0003	0.0003	0.0003	2	0	0%
Calcium (mg/L)	-		40	40	41	42	42	2	0	0%
Chloride (mg/L)	250	А	94	97	126	155	158	2	0	0%

Characteristic	Guideline		Min	5 th %ile	Media	95 th %il	Max	Samples	E	xcep-
	Value (Health or Aesthetic))			n	е				tions
Chromium (mg/L)	0.05	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Copper (mg/L)	2	Н	0.003	0.003	0.012	0.020	0.021	2	0	0%
E. coli	0	Н	0	0	0	0	0	26	0	0%
Fluoride (mg/L)	1.5	Н	0.1	0.2	0.4	0.7	0.7	2	0	0%
Free chlorine (mg/L) ¹			0.3	0.5	0.9	2.0	2.1	26	0	0%
lodine (mg/L)			0.01	0.01	0.02	0.03	0.03	2	0	0%
Iron (mg/L)	0.3	А	0.005	0.005	0.008	0.010	0.010	2	0	0%
Lead (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Magnesium (mg/L)	-		29	29	30	30	30	2	0	0%
Manganese (mg/L)	0.5	Н	0.003	0.006	0.036	0.067	0.070	2	0	0%
Mercury (mg/L)	0.001	Н	0.0001	0.0001	0.0001	0.0001	0.0001	2	0	0%
Molybdenum (mg/L)	0.05	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Nickel (mg/L)	0.02	Н	0.005	0.005	0.005	0.005	0.005	2	0	0%
Nitrate (mg/L)	50	Н	0.5	0.5	0.8	1.0	1.0	2	0	0%
Nitrite (mg/L)	3	Н	0.05	0.07	0.28	0.48	0.50	2	0	0%
рН	6.5 - 8.5	А	1.4	7.4	7.8	8.0	8.1	28	1	4%
Selenium (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Silver (mg/L)	0.1	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Sodium (mg/L)	180	А	94	100	152	203	209	2	1	50%
Sulfate (mg/L)	250	А	0.5	3.5	30.8	58.0	61.0	2	0	0%
Temperature (oC)			25	25	25	29	35	36	6	0
Total Chlorine (mg/L)	5	Н	0.5	0.6	1.2	2.2	2.5	25	0	0%
Total Coliforms (cfu/1	00 mL)		0	0	0	0	3	26	1	4%
Total Dissolved Solids (mg/L)		A	363	390	631	872	899	2	1	50%
Total Hardness as CaC (mg/L) ²		A	220	220	223	226	227	2		100 %
True Colour (Hazen Ur (HU))		A	0.5	0.5	0.8	1.0	1.0	2	0	0%
Turbidity (NTU)	5	Α	0.05	0.2	0.6	1.8	2.1	19	0	0%
Uranium (mg/L)	0.017	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Zinc (mg/L)	3	А	0.01	0.01	0.01	0.01	0.01	2	0	0%

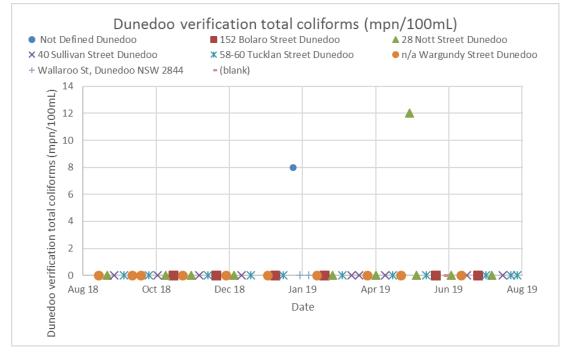
Note 1: The ADWG has a Health limit for chlorine of 5mg/L, with recommendation for a free chlorine residual above 0.2 mg/L in the reticulation

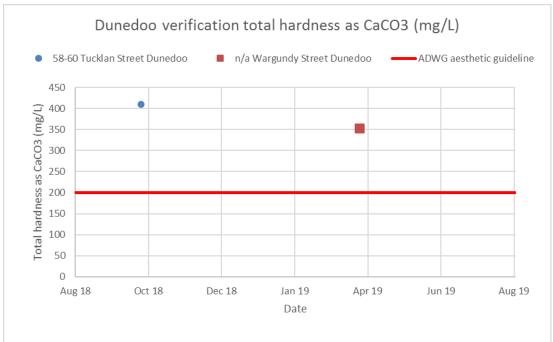
Note 2: ADWG recommend 200 mg/L hardness as CaCO3 as an upper limit to minimise the build-up of scale. A lower limit of 60 mg/L is desirable for avoiding corrosion by soft water.


*This is a suspected typography error

Appendix H Dunedoo water quality data

H.1 Water quality graphs


H.1.1 Operational monitoring graphs


Figure H-1. Dunedoo reticulation pH

H.1.2 Verification monitoring graphs

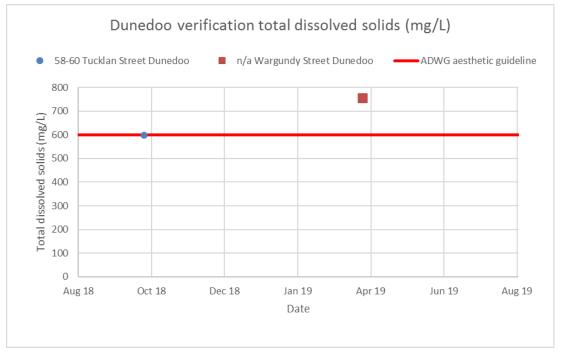


Figure H-3. Dunedoo verification total hardness

Figure H-4. Dunedoo verification TDS

H.2 Water quality data summary

Table H-1. Dunedoo operational monitoring data summary

Source/Sample Point	Parameter	Min	Avg	Max	Lower Upper critical critical limit limit	ССР
Reservoir Water Quality						

Source/Sample Point	Parameter	Min	Avg	Max		Upper critical limit	No. of samples	ССР
Bullinda St res	Free chlorine (mg/L)	0.80	1.43	1.98	0.7	4.0	364	DDO1
Bullinda St res	рН	6.89	7.28	7.59			364	
Rhodes St res	Free chlorine (mg/L)	0.96	1.41	2.00	0.7	4.0	102	DDO1
Rhodes St res	рН	6.93	7.34	7.60			102	
Reticulated Water Quality								
Shire depot	Free chlorine (mg/L)	0.85	1.30	1.99	0.7	4.0	102	DDO3
Shire depot	рН	7.01	7.18	7.40			102	
Nott St SPS	Free chlorine (mg/L)	0.90	1.43	1.97	0.2	4.0	52	DDO3
Nott St SPS	рН	7.05	7.18	7.36			52	
Dunedoo STP	Free chlorine (mg/L)	0.70	1.00	1.46	0.2	4.0	53	DDO3
Dunedoo STP	рН	6.99	7.15	7.45			53	
Robertson Oval	Free chlorine (mg/L)	0.75	1.44	2.00	0.2	4.0	52	DDO3
Robertson Oval	рН	6.82	7.21	7.44			52	
Dunedoo Hall	Turbidity	0.00	0.51	0.89			6	

Source: Dunedoo operational monitoring spreadsheet

H.2.1 Verification monitoring

For the new WTP Verification data taken from the NSW Health database, from 1 August 2018 to 31 July 2019 was analysed for the Dunedoo water system. Any microbiological readings '< 1' were taken as zero, all other less than readings were taken as half of their upper limits, that is '< 0.1' became '0.05'. Values listed as greater than were taken as their lower limit, '> 200' became '200'. A summary of key verification data is shown in Table H-2.

ADWG aesthetic guideline exceedances are highlighted blue and ADWG health exceedances or microbiological detections are highlighted orange.

Characteristic	Guideline Value (Health		Min	5 th %ile	Media n	95 th %il e	Max	Samples	Excep- tions	
	or Aesthetic)									
Aluminium (mg/L)	0.2	А	0.005	0.005	0.008	0.01	0.01	2	0 0	0%
Antimony (mg/L)	0.003	Н	0.0005	0.0005	0.0005	0.0005	0.0005	2	0 0	0%
Arsenic (mg/L)	0.01	Н	0.00	0.00	0.00	0.00	0.00	2	0 0	0%
Barium (mg/L)	2	Н	0.08	0.08	0.08	0.09	0.09	2	0 0	0%
Boron (mg/L)	4	Н	0.1	0.1	0.1	0.1	0.1	2	0 0	0%
Cadmium (mg/L)	0.002	Н	0	0	0	0	0	2	0 0	0%
Calcium (mg/L)	-		62	62	65	68	69	2	0 0	0%
Chloride (mg/L)	250	А	169	170	181	192	193	2	0 0	0%
Chromium (mg/L)	0.05	Н	0.003	0.003	0.004	0.005	0.005	2	0 0	0%
Copper (mg/L)	2	Н	0.022	0.022	0.027	0.031	0.031	2	0 0	0%
E. coli	0	Н	0.00	0.00	0.00	0.00	0.00	50	0 0	0%

Table H-2. Dunedoo verification monitoring data summary

Characteristic	Guideline Value (Health			5 th %ile	Media n	95 th %il e	Max	Samples	Excep- tions	
	or Aesthetic)							•		 (
Fluoride (mg/L)	1.5	Н	0.5	0.5	0.6	0.6	0.6	2	0	0%
Free chlorine (mg/L) ¹			0.6	0.9	1.5	2.5	3.0	50	0	0%
Iodine (mg/L)			0.1	0.1	0.1	0.1	0.1	2	0	0%
Iron (mg/L)	0.3	Α	0.01	0.01	0.01	0.01	0.01	2	0	0%
Lead (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Magnesium (mg/L)	-		48.3	48.7	53.0	57.3	57.8	2	0	0%
Manganese (mg/L)	0.5	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Mercury (mg/L)	0.001	Н	0.0001	0.0001	0.0001	0.0001	0.0001	2	0	0%
Molybdenum (mg/L)	0.05	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Nickel (mg/L)	0.02	Н	0.01	0.01	0.01	0.01	0.01	2	0	0%
Nitrate (mg/L)	50	Н	1.0	1.1	2.0	2.9	3.0	2	0	0%
Nitrite (mg/L)	3	Н	0.1	0.1	0.1	0.1	0.1	2	0	0%
рН	8.5	А	7.1	7.2	7.4	7.7	7.9	52	0	0%
Selenium (mg/L)	0.01	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Silver (mg/L)	0.1	Н	0.001	0.001	0.001	0.001	0.001	2	0	0%
Sodium (mg/L)	180	А	77	79	98	117	119	2	0	0%
Sulfate (mg/L)	250	А	20	20	21	22	22	2	0	0%
Temperature (oC)			21	21	22	28	33	33	12	0
Total Chlorine (mg/L)	5	Н	0.5	0.9	1.7	2.8	3.2	50	0	0%
Total Coliforms (cfu/10 mL)			0.0	0.0	0.0	0.0	12.0	50	2	4%
Total Dissolved Solids (TDS) (mg/L)	600	A	598	606	678	749	757	2	1	50 %
Total Hardness as CaC (mg/L) ²	03 200	A	353	355	381	406	409	2	2	10 0%
True Colour (Hazen Ur (HU))	iits 15	A	0.5	0.5	0.5	0.5	0.5	2	0	0%
Turbidity (NTU)	5	А	0.2	0.3	0.6	1.5	1.5	37	0	0%
Uranium (mg/L)	0.017	Н	0.003	0.003	0.003	0.003	0.003	2	0	0%
Zinc (mg/L)	3	А	0.03	0.03	0.04	0.04	0.04	2	0	0%

Note 1: The ADWG has a Health limit for chlorine of 5mg/L, with recommendation for a free chlorine residual above 0.2 mg/L in the reticulation